Queueing Systems

, Volume 62, Issue 1–2, pp 1–33 | Cite as

Synchronized reneging in queueing systems with vacations

  • Ivo Adan
  • Antonis Economou
  • Stella Kapodistria
Open Access


In this paper we present a detailed analysis of queueing models with vacations and impatient customers, where the source of impatience is the absence of the server. Instead of the standard assumption that customers perform independent abandonments, we consider situations where customers abandon the system simultaneously. This is, for example, the case in remote systems where customers may decide to abandon the system, when a transport facility becomes available.


Queueing Vacations Reneging Impatient customers Synchronization q-hypergeometric series Mean value analysis Stationary distribution Fluid limit 

Mathematics Subject Classification (2000)

90B22 60K25 


  1. 1.
    Adan, I., Weiss, G.: Analysis of a simple Markovian re-entrant line with infinite supply of work under the LBFS policy. Queueing Syst. 54, 169–183 (2006) CrossRefGoogle Scholar
  2. 2.
    Altman, E., Borovkov, A.A.: On the stability of retrial queues. Queueing Syst. 26, 343–363 (1997) CrossRefGoogle Scholar
  3. 3.
    Altman, E., Yechiali, U.: Analysis of customers’ impatience in queues with server vacations. Queueing Syst. 52, 261–279 (2006) CrossRefGoogle Scholar
  4. 4.
    Artalejo, J.R., Economou, A., Lopez-Herrero, M.J.: Evaluating growth measures in populations subject to binomial and geometric catastrophes. Math. Biosci. Eng. 4, 573–594 (2007) Google Scholar
  5. 5.
    Baccelli, F., Boyer, P., Hebuterne, G.: Single-server queues with impatient customers. Adv. Appl. Probab. 16, 887–905 (1984) CrossRefGoogle Scholar
  6. 6.
    Boxma, O.J., de Waal, P.R.: Multiserver queues with impatient customers. ITC 14, 743–756 (1994) Google Scholar
  7. 7.
    Daley, D.J.: General customer impatience in the queue GI/G/1. J. Appl. Probab. 2, 186–205 (1965) CrossRefGoogle Scholar
  8. 8.
    Denteneer, D., van Leeuwaarden, J.S.H., Adan, I.J.B.F.: The acquisition queue. Queueing Syst. 56(3), 229–240 (2007) CrossRefGoogle Scholar
  9. 9.
    Economou, A.: The compound Poisson immigration process subject to binomial catastrophes. J. Appl. Probab. 41, 508–523 (2004) CrossRefGoogle Scholar
  10. 10.
    Economou, A., Fakinos, D.: Alternative approaches for the transient analysis of Markov chains with catastrophes. J. Stat. Theory Pract. 2, 183–197 (2008) Google Scholar
  11. 11.
    Economou, A., Kapodistria, S.: Q-series in Markov chains with binomial transitions: studying a queue with synchronization. Probab. Eng. Inf. Sci. 23, 75–99 (2009) CrossRefGoogle Scholar
  12. 12.
    Fuhrmann, S.W.: A note on the M/G/1 queue with server vacations. Oper. Res. 32, 1368–1373 (1984) CrossRefGoogle Scholar
  13. 13.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge University Press, Cambridge (2004) Google Scholar
  14. 14.
    Hanschke, X.: Explicit formulas for the characteristics of the M/M/2/2 queue with repeated attempts. J. Appl. Probab. 24, 486–494 (1987) CrossRefGoogle Scholar
  15. 15.
    Ismail, M.E.H.: A queueing model and a set of orthogonal polynomials. J. Math. Anal. Appl. 108, 575–594 (1985) CrossRefGoogle Scholar
  16. 16.
    Kemp, A.W.: Absorption sampling and absorption distribution. J. Appl. Probab. 35, 489–494 (1998) CrossRefGoogle Scholar
  17. 17.
    Kemp, A.W.: Steady-state Markov chain models for certain q-confluent hypergeometric distributions. J. Stat. Plan. Inference 135, 107–120 (2005) CrossRefGoogle Scholar
  18. 18.
    Krishnamoorthy, A., Deepak, T., Joshua, V.: An M/G/1 retrial queue with nonpersistent customers and orbital search. Stoch. Anal. Appl. 23, 975–997 (2005) CrossRefGoogle Scholar
  19. 19.
    Palm, C.: Methods of judging the annoyance caused by congestion. Tele 4, 189–208 (1953) Google Scholar
  20. 20.
    Palm, C.: Research on telephone traffic carried by full availability groups. Tele 1, 107 (1957) (English translation of results first published in 1946 in Swedish in the same journal, which was then entitled Tekniska Meddelanden fran Kungl. Telegrfstyrelsen) Google Scholar
  21. 21.
    Ross, S.M.: Introduction to Probability Models, 8th edn. Academic Press, London (2003) Google Scholar
  22. 22.
    Takacs, L.: A single-server queue with limited virtual waiting time. J. Appl. Probab. 11, 612–617 (1974) CrossRefGoogle Scholar
  23. 23.
    Takagi, H.: Vacation and Priority Systems. Queueing Analysis—A Foundation of Performance Evaluation, vol. I. North-Holland, New York (1991) Google Scholar
  24. 24.
    Tian, N., Zhang, Z.G.: Vacation Queueing Models: Theory and Applications. Springer, New York (2006) Google Scholar
  25. 25.
    Yechiali, U.: Queues with system disasters and impatient customers when system is down. Queueing Syst. 56, 195–202 (2007) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Ivo Adan
    • 1
  • Antonis Economou
    • 2
  • Stella Kapodistria
    • 2
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands
  2. 2.Department of MathematicsUniversity of Athens PanepistemiopolisAthensGreece

Personalised recommendations