Queueing Systems

, Volume 61, Issue 1, pp 1–35 | Cite as

Perturbation analysis of an M/M/1 queue in a diffusion random environment

  • Christine Fricker
  • Fabrice Guillemin
  • Philippe Robert


We study in this paper an M/M/1 queue whose server rate depends upon the state of an independent Ornstein–Uhlenbeck diffusion process (X(t)) so that its value at time t is μ φ(X(t)), where φ(x) is some bounded function and μ>0. We first establish the differential system for the conditional probability density functions of the couple (L(t),X(t)) in the stationary regime, where L(t) is the number of customers in the system at time t. By assuming that φ(x) is defined by φ(x)=1−ε((x a/ε)(−b/ε)) for some positive real numbers a, b and ε, we show that the above differential system has a unique solution under some condition on a and b. We then show that this solution is close, in some appropriate sense, to the solution to the differential system obtained when φ is replaced with Φ(x)=1−ε x for sufficiently small ε. We finally perform a perturbation analysis of this latter solution for small ε. This allows us to check at the first order the validity of the so-called reduced service rate approximation, stating that everything happens as if the server rate were constant and equal to \(\mu(1-\varepsilon {\mathbb{E}}(X(t)))\) .


M/M/1 queue Self-adjoint operators Perturbation analysis Power series expansion Reduced service rate 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altman, E., Avrachenkov, K., Núñez-Queija, R.R.: Perturbation analysis for denumerable Markov chains with application to queueing models. Adv. Appl. Probab. 36(3), 839–853 (2004) CrossRefGoogle Scholar
  2. 2.
    Antunes, N., Fricker, C., Guillemin, F., Robert, P.: Integration of streaming services and TCP data transmission in the Internet. Perform. Eval. 62(1-4), 263–277 (2005) CrossRefGoogle Scholar
  3. 3.
    Antunes, N., Fricker, C., Guillemin, F., Robert, P.: Perturbation analysis of a variable M/M/1 queue: A probabilistic approach. Adv. Appl. Probab. 38(1), 263–283 (2006) CrossRefGoogle Scholar
  4. 4.
    Borovkov, A.A.: Limit laws for queueing processes in multichannel systems. Sib. Mat. Ž. 8, 983–1004 (1967) Google Scholar
  5. 5.
    Delcoigne, F., Proutière, A., Régnié, G.: Modelling integration of streaming and data traffic. In: ITC Specialist Seminar on IP Traffic, Würzburg, Germany, July 2002 Google Scholar
  6. 6.
    Iglehart, D.: Weak convergence of compound stochastic process. I. Stoch. Process. Appl. 1, 11–31 (1973) CrossRefGoogle Scholar
  7. 7.
    Iglehart, D.: Weak convergence of compound stochastic process. I. Stoch. Process. Appl. 1, 185–186 (1973). Corrigendum CrossRefGoogle Scholar
  8. 8.
    Karlin, S., McGregor, J.L.: Many-server queueing processes with Poisson input and exponential service times. Pac. J. Math. 8, 87–118 (1958) Google Scholar
  9. 9.
    Karlin, S., McGregor, J.L.: Random walks. Ill. J. Math 3, 66–81 (1959) Google Scholar
  10. 10.
    Karlin, S., McGregor, J.L.: Ehrenfest urn model. J. Appl. Probab. 2, 352–376 (1965) CrossRefGoogle Scholar
  11. 11.
    Lebedev, N.N.: Special Functions and Their Applications. Dover, New York (1972) Google Scholar
  12. 12.
    Massoulié, L., Roberts, J.: Bandwidth sharing: Objectives and algorithms. In: INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 1395–1403, 1999 Google Scholar
  13. 13.
    Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability. Communications and Control Engineering Series. Springer, Berlin (1993) Google Scholar
  14. 14.
    Núñez-Queija, R.: Sojourn times in a processor sharing queue with service interruptions. Queueing Syst. 34, 351–386 (2000) CrossRefGoogle Scholar
  15. 15.
    Núñez-Queija, R.: Sojourn times in non-homogeneous QBD processes with processor sharing. Stoch. Mod. 17, 61–92 (2001) CrossRefGoogle Scholar
  16. 16.
    Núñez-Queija, R., Boxma, O.J.: Analysis of a multi-server queueing model of ABR. J. Appl. Math. Stoch. An. 11, 339–354 (1998) CrossRefGoogle Scholar
  17. 17.
    Reed, M., Simon, B.: Fourier Analysis, Self-Adjointness. Methods of Modern Mathematical Physics, vol. 2. Academic, New York (1975) Google Scholar
  18. 18.
    Robert, P.: Stochastic Networks and Queues. Stochastic Modelling and Applied Probability Series, vol. 52. Springer, New York (2003) Google Scholar
  19. 19.
    Sansigre, G., Valent, G.: A large family of semi-classical polynomials: the perturbed Chebyshev. J. Comput. Appl. Math. 57, 271–281 (1995) CrossRefGoogle Scholar
  20. 20.
    Schaumburg, E.: Estimation of Markov processes with Lévy type generators. Preprint available at http://www.kellogg.northwestern.edu/faculty/schaumburg/htm/ResearchPapers/mle.pd (2005)

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Christine Fricker
    • 1
  • Fabrice Guillemin
    • 2
  • Philippe Robert
    • 1
  1. 1.INRIA Paris—RocquencourtLe ChesnayFrance
  2. 2.Orange LabsLannionFrance

Personalised recommendations