Advertisement

Queueing Systems

, Volume 55, Issue 2, pp 131–138 | Cite as

Estimation for queues from queue length data

  • J. V. Ross
  • T. Taimre
  • P. K. Pollett
Article

Abstract

We consider the estimation of arrival and service rates for queues based on queue length data collected at successive, not necessarily equally spaced, time points. In particular, we consider the M/M/c queue, for c large, but application of the method to the repairman problem is almost identical, and the general approach presented should extend to other queue types. The estimation procedure makes use of an Ornstein-Uhlenbeck diffusion approximation to the Markov process description of the queue. We demonstrate the approach through simulation studies and discuss situations in which the approximation works best.

Keywords

Diffusion approximation M/M/c queues Maximum likelihood Queue length Rate estimation Traffic intensity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.K. Acharya, On normal approximation for maximum likelihood estimation from single server queues. Queueing Systems 31 (1999) 207–216.CrossRefGoogle Scholar
  2. 2.
    C. Armero, Bayesian inference in Markovian queues. Queueing Systems 15 (1994) 419–426.CrossRefGoogle Scholar
  3. 3.
    C. Armero and M.J. Bayarri, Bayesian prediction in M/M/1 queues. Queueing Systems 15 (1994) 401–417.CrossRefGoogle Scholar
  4. 4.
    A.D. Barbour, On a functional central limit theorem for Markov population processes. Adv. Appl. Probab. 6 (1974) 21–39.CrossRefGoogle Scholar
  5. 5.
    A.D. Barbour, Quasi-stationary distributions in Markov population processes. Adv. Appl. Probab. 8 (1976) 296–314.CrossRefGoogle Scholar
  6. 6.
    A.D. Barbour, Equilibrium distributions Markov population processes. Adv. Appl. Probab. 12 (1980) 591–614.CrossRefGoogle Scholar
  7. 7.
    A.D. Barbour, Density-dependent Markov population processes. In W. Jäger, H. Rost and P. Tautu (eds.), Biological growth and spread Lecture Notes in Biomathematics (Springer, Berlin, 1980) vol. 38, pp. 36–49.Google Scholar
  8. 8.
    I.V. Basawa and N.U. Prabhu, Large sample inference from single server queues. Queueing Systems 3 (1988) 289–304.CrossRefGoogle Scholar
  9. 9.
    I.V. Basawa, U.N. Bhat, and R. Lund, Maximum likelihood estimation for single server queues from waiting time data. Queueing Systems 24 (1997) 155–167.CrossRefGoogle Scholar
  10. 10.
    U.N. Bhat and S.S. Rao, Statistical analysis of queueing systems. Queueing Systems 1 (1987) 217–247.CrossRefGoogle Scholar
  11. 11.
    N.H. Bingham and S.M. Pitts, Non-parametric estimation for the M/G/∞ queue. Ann. Inst. Statist. Math. 1 (1999) 71–97.CrossRefGoogle Scholar
  12. 12.
    A.B. Clarke, Maximum likelihood estimates in a simple queue. Ann. Math. Statist. 28 (1957) 1036–1040.Google Scholar
  13. 13.
    P.D. Feigin, Maximum likelihood estimation for continuous-time stochastic processes. Adv. Appl. Probab. 8 (1976) 712–736.CrossRefGoogle Scholar
  14. 14.
    D.L. Iglehart, Limiting diffusion approximations for the many server queue and the repairman problem. J. Appl. Probab. 2 (1965) 429–441.CrossRefGoogle Scholar
  15. 15.
    T. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7 (1970) 49–58.CrossRefGoogle Scholar
  16. 16.
    T. Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8 (1971) 344–356.CrossRefGoogle Scholar
  17. 17.
    D.R. McNeil and G.H. Weiss, A large population approach to estimation of parameters in Markov population models. Biometrika 64 (1977) 553–558.CrossRefGoogle Scholar
  18. 18.
    P.K. Pollett, On a model for interference between searching insect parasites. J. Austral. Math. Soc. Ser. B 32 (1990) 133–150.CrossRefGoogle Scholar
  19. 19.
    J.V. Ross, T. Taimre, and P.K. Pollett, On parameter estimation in population models. Theor. Popul. Biol. 70 (2006) 498–510.CrossRefGoogle Scholar
  20. 20.
    R.Y. Rubinstein and D.P. Kroese, The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning (Springer-Verlag, New York, 2004).Google Scholar
  21. 21.
    G.B. Rybicki, Unpublished Notes: Notes on gaussian random functions with exponential correlation functions (Ornstein-Uhlenbeck Process) from http://www.lanl.gov/DLDSTP/fast/. (1994).
  22. 22.
    G.B. Rybicki and W.H. Press, A class of fast methods for processing irregularly sampled or otherwise inhomogeneous one-dimensional data. Phys. Rev. Lett. 74 (1995) 1060–1063.CrossRefGoogle Scholar
  23. 23.
    A.R. Ward and P.W. Glynn, A diffusion approximation for a Markovian queue with reneging. Queueing Systems 43 (2003) 103–128.CrossRefGoogle Scholar
  24. 24.
    A.R. Ward and P.W. Glynn, Properties of the reflected Ornstein-Uhlenbeck process. Queueing Systems 44 (2003) 109–123.CrossRefGoogle Scholar
  25. 25.
    A.R. Ward and P.W. Glynn, A diffusion approximation for a GI/GI/1 queue with balking or reneging. Queueing Systems 50 (2005) 371–400.CrossRefGoogle Scholar
  26. 26.
    R.W. Wolff, Problems of statistical inference for birth and death queueing models. Operat. Res. 13 (1965) 343–357.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK
  2. 2.Department of MathematicsUniversity of QueenslandQueenslandAustralia

Personalised recommendations