Molecular and Biological Functions of Quercetin as a Natural Solution for Cardiovascular Disease Prevention and Treatment

Abstract

Cardiovascular disease (CVD) is a worldwide health problem with growing up rates of mortality and morbidity. Many risk factors, including high blood pressure, cigarette smoking, diabetes, obesity, and dyslipidemia are responsible for CVD. CVD can be prevented by some simple and cost-effective steps such as smoking cessation, normalizing body weight, regular physical activity, and dietary changes, including decreasing saturated fats, increasing the intake of vegetables and fruits, and reducing sugar intake. In the last decades, growing up number of studies were performed to explain the possible function of non-nutrient substances from the diet which might prevent CVD. One of these natural compounds is quercetin which is widely present in vegetables, tea, fruits and wine. Many in vitro, in vivo and clinical studies have indicated the cardioprotective functions of quercetin. They can be explained by quercetin’s reducing blood pressure, antioxidant potential and some other activities. This review evaluates the experimental and clinical studies that have studied the effect of quercetin in CVD and summarizes the molecular mechanisms of action as well as clinical effects of quercetin in CVD.

This is a preview of subscription content, log in to check access.

Fig. 1

Abbreviations

CVD:

Cardiovascular disease

WHO:

World Health Organization

ROS:

Reactive oxygen species

IL-1:

Interleukin-1

IFN-γ :

Interferon-γ

TNF-α :

Tumor necrosis factor-α

TNF-β :

Tumor necrosis factor-β

MCP-1:

monocyte chemoattractant protein-1

IL-8:

Interleukin-8

VCAM-1:

Vascular cell adhesion molecule-1

PDGF:

Platelet-derived growth factor

TGF-β :

Transforming growth factor-β

SMC:

Smooth muscle cell

CRP:

C-reactive protein

NO:

Nitric oxide

SOD:

Superoxide dismutase

CAT:

Catalase

MI:

Myocardial infarction

MDA:

Malondialdehyde

PC:

Protein carbonyl

Nox:

Nitrite and nitrate

iNOS:

Inducible nitric oxide synthase

GSH:

Glutathione

GSSG :

Oxidized glutathione

TLRs:

Toll-like receptors

References

  1. 1.

    Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990-2020: global burden of disease study. Lancet (London, England) 349:1498–1504

    CAS  Google Scholar 

  2. 2.

    Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, Hoes AW, Jennings CS, Landmesser U, Pedersen TR, Reiner Ž, Riccardi G, Taskinen MR, Tokgozoglu L, Verschuren WM, Vlachopoulos C, Wood DA, Zamorano JL (2016) 2016 ESC/EAS guidelines for the management of dyslipidaemias: the task force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 253:281–344

    CAS  PubMed  Google Scholar 

  3. 3.

    Van Camp G (2014) Cardiovascular disease prevention. Acta Clin Belg 69:407–411

    PubMed  Google Scholar 

  4. 4.

    Nishida C, Uauy R, Kumanyika S, Shetty P (2004) The joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutr 7:245–250

    PubMed  Google Scholar 

  5. 5.

    Leong DP, Joseph PG, McKee M, Anand SS, Teo KK, Schwalm JD, Yusuf S (2017) Reducing the global burden of cardiovascular disease, part 2: prevention and treatment of cardiovascular disease. Circulation Res 121:695–710

  6. 6.

    Haynes RB, McDonald HP, Garg AX (2002) Helping patients follow prescribed treatment: clinical applications. JAMA 288:2880–2883

    PubMed  Google Scholar 

  7. 7.

    Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead. Cell 104:503–516

    CAS  PubMed  Google Scholar 

  8. 8.

    Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643

    CAS  PubMed  Google Scholar 

  9. 9.

    Aggarwal M, Aggarwal B, Rao J (2017) Integrative medicine for cardiovascular disease and prevention. Med Clin North Am 101:895–923

    PubMed  Google Scholar 

  10. 10.

    Cicero AFG, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, Fras Z, Katsiki N, Langlois M, Latkovskis G, Panagiotakos DB, Paragh G, Mikhailidis DP, Mitchenko O, Paulweber B, Pella D, Pitsavos C, Reiner Ž, Ray KK, Rizzo M, Sahebkar A, Serban MC, Sperling LS, Toth PP, Vinereanu D, Vrablík M, Wong ND, Banach M (2017) Lipid-lowering nutraceuticals in clinical practice: position paper from an international lipid expert panel. Nutr Rev 75:731–767

    PubMed  Google Scholar 

  11. 11.

    Larson AJ, Symons JD, Jalili T (2012) Therapeutic potential of quercetin to decrease blood pressure: review of efficacy and mechanisms. Adv Nutr 3:39–46

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Oboh G, Ademosun AO, Ogunsuyi OB (2016) Quercetin and its role in chronic diseases. Adv Exp Med Biol 929:377–387

    CAS  PubMed  Google Scholar 

  13. 13.

    Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230s–242s

    CAS  PubMed  Google Scholar 

  14. 14.

    Egert S, Wolffram S, Bosy-Westphal A, Boesch-Saadatmandi C, Wagner AE, Frank J, Rimbach G, Mueller MJ (2008) Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. J Nutr 138:1615–1621

    CAS  PubMed  Google Scholar 

  15. 15.

    Olthof MR, Hollman PC, Vree TB, Katan MB (2000) Bioavailabilities of quercetin-3-glucoside and quercetin-4′-glucoside do not differ in humans. J Nutr 130:1200–1203

    CAS  PubMed  Google Scholar 

  16. 16.

    Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C (2001) Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J Nutr 131:2109–2114

    CAS  PubMed  Google Scholar 

  17. 17.

    Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, Williamson G (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett 436:71–75

    CAS  PubMed  Google Scholar 

  18. 18.

    Manach C, Morand C, Texier O, Favier ML, Agullo G, Demigne C, Regerat F, Remesy C (1995) Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. J Nutr 125:1911–1922

    CAS  PubMed  Google Scholar 

  19. 19.

    Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    CAS  PubMed  Google Scholar 

  21. 21.

    Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349:1605–1613

    CAS  PubMed  Google Scholar 

  22. 22.

    Friedman AN (2002) Renovascular hypertension, endothelial function, and oxidative stress. N Engl J Med 347:1528–1530 author reply 1528-1530

    PubMed  Google Scholar 

  23. 23.

    Wentworth P Jr, Nieva J, Takeuchi C, Galve R, Wentworth AD, Dilley RB, DeLaria GA, Saven A, Babior BM, Janda KD, Eschenmoser A, Lerner RA (2003) Evidence for ozone formation in human atherosclerotic arteries. Science 302:1053–1056

    CAS  PubMed  Google Scholar 

  24. 24.

    Taleb S (2016) Inflammation in atherosclerosis. Arch Cardiovasc Dis 109:708–715

    PubMed  Google Scholar 

  25. 25.

    Alavi A, Hood JD, Frausto R, Stupack DG, Cheresh DA (2003) Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301:94–96

    CAS  PubMed  Google Scholar 

  26. 26.

    Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, Marks AR, Ron D, Tabas I (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5:781–792

    CAS  PubMed  Google Scholar 

  27. 27.

    Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, Farb A, Guerrero LJ, Hayase M, Kutys R, Narula J, Finn AV, Virmani R (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325

    CAS  PubMed  Google Scholar 

  28. 28.

    Li JJ, Chen JL (2005) Inflammation may be a bridge connecting hypertension and atherosclerosis. Med Hypotheses 64:925–929

    CAS  PubMed  Google Scholar 

  29. 29.

    O'Keefe JH, Carter MD, Lavie CJ (2009) Primary and secondary prevention of cardiovascular diseases: a practical evidence-based approach. Mayo Clin Proc 84:741–757

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Tropeano AI, Saleh N, Hawajri N, Macquin-Mavier I, Maison P (2011) Do all antihypertensive drugs improve carotid intima-media thickness? A network meta-analysis of randomized controlled trials. Fundam Clin Pharmacol 25:395–404

    CAS  PubMed  Google Scholar 

  31. 31.

    Piano MR, Benowitz NL, Fitzgerald GA, Corbridge S, Heath J, Hahn E, Pechacek TF, Howard G (2010) Impact of smokeless tobacco products on cardiovascular disease: implications for policy, prevention, and treatment: a policy statement from the American Heart Association. Circulation 122:1520–1544

    PubMed  Google Scholar 

  32. 32.

    Donahoe SM, Stewart GC, McCabe CH, Mohanavelu S, Murphy SA, Cannon CP, Antman EM (2007) Diabetes and mortality following acute coronary syndromes. JAMA 298:765–775

    CAS  PubMed  Google Scholar 

  33. 33.

    Barnett AH (2008) The importance of treating cardiometabolic risk factors in patients with type 2 diabetes. Diab Vasc Dis Res 5:9–14

    PubMed  Google Scholar 

  34. 34.

    Kachur S, Lavie CJ, de Schutter A, Milani RV, Ventura HO (2017) Obesity and cardiovascular diseases. Minerva Med 108:212–228

    PubMed  Google Scholar 

  35. 35.

    Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the obesity committee of the council on nutrition, physical activity, and metabolism. Circulation 113:898–918

    PubMed  Google Scholar 

  36. 36.

    Libby P (2006) Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr 83:456s–460s

    CAS  PubMed  Google Scholar 

  37. 37.

    Young A, Koduri G, Batley M, Kulinskaya E, Gough A, Norton S, Dixey J (2007) Mortality in rheumatoid arthritis. Increased in the early course of disease, in ischaemic heart disease and in pulmonary fibrosis. Rheumatology 46:350–357

    CAS  PubMed  Google Scholar 

  38. 38.

    Mosca L (2002) C-reactive protein--to screen or not to screen? N Engl J Med 347:1615–1617

    PubMed  Google Scholar 

  39. 39.

    Aviles RJ, Askari AT, Lindahl B, Wallentin L, Jia G, Ohman EM, Mahaffey KW, Newby LK, Califf RM, Simoons ML, Topol EJ, Berger P, Lauer MS (2002) Troponin T levels in patients with acute coronary syndromes, with or without renal dysfunction. N Engl J Med 346:2047–2052

    CAS  PubMed  Google Scholar 

  40. 40.

    Lindberg S (2014) Prognostic utility of the soluble CD40 ligand in acute coronary syndrome. Coron Artery Dis 25:548–549

    PubMed  Google Scholar 

  41. 41.

    Freedman JE (2003) CD40 ligand--assessing risk instead of damage? N Engl J Med 348:1163–1165

    PubMed  Google Scholar 

  42. 42.

    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Wang L, Tu YC, Lian TW, Hung JT, Yen JH, Wu MJ (2006) Distinctive antioxidant and antiinflammatory effects of flavonols. J Agric Food Chem 54:9798–9804

    CAS  PubMed  Google Scholar 

  44. 44.

    Dogan Z, Kocahan S, Erdemli E, Kose E, Yilmaz I, Ekincioglu Z, Ekinci N, Turkoz Y (2015) Effect of chemotherapy exposure prior to pregnancy on fetal brain tissue and the potential protective role of quercetin. Cytotechnology 67:1031–1038

    CAS  PubMed  Google Scholar 

  45. 45.

    Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    CAS  PubMed  Google Scholar 

  46. 46.

    Zhang M, Swarts SG, Yin L, Liu C, Tian Y, Cao Y, Swarts M, Yang S, Zhang SB, Zhang K, Ju S, Olek DJ Jr, Schwartz L, Keng PC, Howell R, Zhang L, Okunieff P (2011) Antioxidant properties of quercetin. Adv Exp Med Biol 701:283–289

    CAS  PubMed  Google Scholar 

  47. 47.

    Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1994) Dietary flavonoids and cancer risk in the Zutphen elderly study. Nutr Cancer 22:175–184

    CAS  PubMed  Google Scholar 

  48. 48.

    Knekt P, Jarvinen R, Reunanen A, Maatela J (1996) Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ 312:478–481

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Czepas J, Gwozdzinski K (2014) The flavonoid quercetin: possible solution for anthracycline-induced cardiotoxicity and multidrug resistance. Biomed Pharmacother 68:1149–1159

    CAS  PubMed  Google Scholar 

  50. 50.

    Chis IC, Baltaru D, Dumitrovici A, Coseriu A, Radu BC, Moldovan R, Muresan A (2018) Protective effects of quercetin from oxidative/nitrosative stress under intermittent hypobaric hypoxia exposure in the rat's heart. Physiol Int 105:233–246

    CAS  PubMed  Google Scholar 

  51. 51.

    Milton Prabu S, Muthumani M, Shagirtha K (2013) Quercetin potentially attenuates cadmium induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. Eur Rev Med Pharmacol Sci 17:582–595

    CAS  PubMed  Google Scholar 

  52. 52.

    Castillo RL, Herrera EA (2018) Quercetin prevents diastolic dysfunction induced by a high-cholesterol diet: role of oxidative stress and bioenergetics in hyperglycemic rats. Oxid Med Cell Longev 2018:7239123

  53. 53.

    Jing Z, Wang Z, Li X, Li X, Cao T, Bi Y, Zhou J, Chen X, Yu D, Zhu L, Li S (2016) Protective effect of quercetin on posttraumatic cardiac injury. Sci Rep 6:30812

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Oyagbemi AA, Omobowale TO, Ola-Davies OE, Asenuga ER, Ajibade TO, Adejumobi OA, Arojojoye OA, Afolabi JM, Ogunpolu BS, Falayi OO, Hassan FO, Ochigbo GO, Saba AB, Adedapo AA, Yakubu MA (2018) Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARgamma signaling pathways. BioFactors 44:465–479

    CAS  PubMed  Google Scholar 

  55. 55.

    Galisteo M, Garcia-Saura MF, Jimenez R, Villar IC, Zarzuelo A, Vargas F, Duarte J (2004) Effects of chronic quercetin treatment on antioxidant defence system and oxidative status of deoxycorticosterone acetate-salt-hypertensive rats. Mol Cell Biochem 259:91–99

    CAS  PubMed  Google Scholar 

  56. 56.

    Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 147:227–235

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Xiao X, Shi D, Liu L, Wang J, Xie X, Kang T, Deng W (2011) Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling. PLoS One 6:e22934

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Warren CA, Paulhill KJ, Davidson LA, Lupton JR, Taddeo SS, Hong MY, Carroll RJ, Chapkin RS, Turner ND (2009) Quercetin may suppress rat aberrant crypt foci formation by suppressing inflammatory mediators that influence proliferation and apoptosis. J Nutr 139:101–105

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Takahashi K, Fukushima S, Yamahara K, Yashiro K, Shintani Y, Coppen SR, Salem HK, Brouilette SW, Yacoub MH, Suzuki K (2008) Modulated inflammation by injection of high-mobility group box 1 recovers post-infarction chronically failing heart. Circulation 118:S106–S114

    PubMed  Google Scholar 

  60. 60.

    Lu XL, Zhao CH, Yao XL, Zhang H (2017) Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway. Biomed Pharmacother 85:658–671

    CAS  PubMed  Google Scholar 

  61. 61.

    Bhaskar S, Sudhakaran PR, Helen A (2016) Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-kappaB signaling pathway. Cell Immunol 310:131–140

    CAS  PubMed  Google Scholar 

  62. 62.

    Wei X, Meng X, Yuan Y, Shen F, Li C, Yang J (2018) Quercetin exerts cardiovascular protective effects in LPS-induced dysfunction in vivo by regulating inflammatory cytokine expression, NF-kappaB phosphorylation, and caspase activity. Mol Cell Biochem 446:43–52

  63. 63.

    Bhaskar S, Helen A (2016) Quercetin modulates toll-like receptor-mediated protein kinase signaling pathways in oxLDL-challenged human PBMCs and regulates TLR-activated atherosclerotic inflammation in hypercholesterolemic rats. Mol Cell Biochem 423:53–65

    CAS  PubMed  Google Scholar 

  64. 64.

    Ma C, Jiang Y, Zhang X, Chen X, Liu Z, Tian X (2018) Isoquercetin ameliorates myocardial infarction through anti-inflammation and anti-apoptosis factor and regulating TLR4-NF-kappaB signal pathway. Mol Med Rep 17:6675–6680

    CAS  PubMed  Google Scholar 

  65. 65.

    Kleemann R, Verschuren L, Morrison M, Zadelaar S, van Erk MJ, Wielinga PY, Kooistra T (2011) Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 218:44–52

  66. 66.

    Mahmoud MF, Hassan NA, El Bassossy HM, Fahmy A (2013) Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: effect on low grade inflammation. PLoS One 8:e63784

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Lekakis J, Rallidis LS, Andreadou I, Vamvakou G, Kazantzoglou G, Magiatis P, Skaltsounis AL, Kremastinos DT (2005) Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. Eur J Cardiovasc Prev Rehabil 12:596–600

    PubMed  Google Scholar 

  68. 68.

    Chopra M, Fitzsimons PE, Strain JJ, Thurnham DI, Howard AN (2000) Nonalcoholic red wine extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and carotenoid concentrations. Clin Chem 46:1162–1170

    CAS  PubMed  Google Scholar 

  69. 69.

    Park HJ, Yang JY, Ambati S, Della-Fera MA, Hausman DB, Rayalam S, Baile CA (2008) Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J Med Food 11:773–783

    CAS  PubMed  Google Scholar 

  70. 70.

    Ahn J, Lee H, Kim S, Park J, Ha T (2008) The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 373:545–549

    CAS  PubMed  Google Scholar 

  71. 71.

    Strobel P, Allard C, Perez-Acle T, Calderon R, Aldunate R, Leighton F (2005) Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. Biochem J 386:471–478

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Yang JY, Della-Fera MA, Rayalam S, Ambati S, Hartzell DL, Park HJ, Baile CA (2008) Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci 82:1032–1039

    CAS  PubMed  Google Scholar 

  73. 73.

    Brull V, Burak C, Stoffel-Wagner B, Wolffram S, Nickenig G, Muller C, Langguth P, Alteheld B, Fimmers R, Naaf S, Zimmermann BF, Stehle P, Egert S (2015) Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomised double-blinded placebo-controlled cross-over trial. Br J Nutr 114:1263–1277

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Pfeuffer M, Auinger A, Bley U, Kraus-Stojanowic I, Laue C, Winkler P, Rüfer CE, Frank J, Bösch-Saadatmandi C, Rimbach G, Schrezenmeir J (2013) Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms. Nutr Metab Cardiovasc Dis 23:403–409

    CAS  PubMed  Google Scholar 

  75. 75.

    Egert S, Bosy-Westphal A, Seiberl J, Kürbitz C, Settler U, Plachta-Danielzik S, Wagner AE, Frank J, Schrezenmeir J, Rimbach G, Wolffram S, Müller MJ (2009) Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr 102:1065–1074

    CAS  PubMed  Google Scholar 

  76. 76.

    Lu TM, Chiu HF, Shen YC, Chung CC, Venkatakrishnan K, Wang CK (2015) Hypocholesterolemic efficacy of quercetin rich onion juice in healthy mild hypercholesterolemic adults: a pilot study. Plant Foods Hum Nutr 70:395–400

    CAS  PubMed  Google Scholar 

  77. 77.

    Hubbard GP, Wolffram S, Lovegrove JA, Gibbins JM (2004) Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J Thromb Haemost 2:2138–2145

    CAS  PubMed  Google Scholar 

  78. 78.

    Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137:2405–2411

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

ZA contributed in conception, design and drafting of the manuscript.

RS, ZR and LM contributed in data collection and manuscript drafting.

All authors approved the final version for submission.

ZA oversaw the study.

Corresponding authors

Correspondence to Rana Shafabakhsh or Zatollah Asemi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mirsafaei, L., Reiner, Ž., Shafabakhsh, R. et al. Molecular and Biological Functions of Quercetin as a Natural Solution for Cardiovascular Disease Prevention and Treatment. Plant Foods Hum Nutr (2020). https://doi.org/10.1007/s11130-020-00832-0

Download citation

Keywords

  • Cardiovascular disease
  • Quercetin
  • Signaling pathway
  • Inflammatory markers
  • Metabolic profiles