Plant Foods for Human Nutrition

, Volume 73, Issue 2, pp 89–94 | Cite as

Cornus mas (L.) Fruit as a Potential Source of Natural Health-Promoting Compounds: Physico-Chemical Characterisation of Bioactive Components

  • Marta De Biaggi
  • Dario Donno
  • Maria Gabriella Mellano
  • Isidoro Riondato
  • Ernest N. Rakotoniaina
  • Gabriele L. Beccaro
Original Paper


Interest in new sources of anti-inflammatory and antioxidant compounds has recently become a major research issue, with the cornelian cherry (Cornus mas L.) receiving particular attention for its significant amounts of phenolic compounds and vitamins, which exhibit a wide range of biological and pharmacological properties. This study was aimed at increasing knowledge regarding the cornelian cherry in Italy through the analysis of biologically active substances in the locally available genotype “Chieri”. Spectrophotometric methods were applied to evaluate antioxidant activity, total anthocyanin content and total polyphenolic content. Identification and quantification of the main phytochemical compounds (polyphenols, monoterpenes, organic acids and vitamin C) was performed via high performance liquid chromatography coupled to a diode array detector. C. mas extracts showed high levels of total soluble solids and low acidity. High amounts of phenolic secondary metabolites were observed, with particular reference to anthocyanins (134.71 mgC3G/100 gFW), which confer remarkable nutraceutical properties to the analysed samples. These results highlight the potential of C. mas fruits as a good source of natural antioxidants, suggesting their use as a functional food. Future studies should focus on identifying other specific phytochemical compounds and the genetic traits of local varieties in order to improve cornelian cherry cultivars for food and medicine production.


Cornelian cherry Phytochemicals Anthocyanins Antioxidant activity Functional food 





ferric reducing antioxidant power


fresh weight


gallic acid equivalent


titratable acidity


total anthocyanin content


total bioactive compound content


total polyphenolic content


total soluble solids


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11130_2018_663_MOESM1_ESM.docx (34 kb)
ESM 1 (DOCX 33 kb)


  1. 1.
    Giampieri F, Alvarez-Suarez JM, Mazzoni L, Forbes-Hernandez TY, Gasparrini M, Gonzalez-Paramas AM, Santos-Buelga C, Quiles JL, Bompadre S, Mezzetti B (2014) An anthocyanin-rich strawberry extract protects against oxidative stress damage and improves mitochondrial functionality in human dermal fibroblasts exposed to an oxidizing agent. Food Funct 5(8):1939–1948. CrossRefPubMedGoogle Scholar
  2. 2.
    Moldovan B, Filip A, Clichici S, Suharoschi R, Bolfa P, David L (2016) Antioxidant activity of cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. J Funct Foods 26:77–87. CrossRefGoogle Scholar
  3. 3.
    Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J (2015) Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci 16(10):24673–24706. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Seeram NP, Schutzki R, Chandra A, Nair MG (2002) Characterization, quantification, and bioactivities of anthocyanins in Cornus species. J Agric Food Chem 50(9):2519–2523. CrossRefPubMedGoogle Scholar
  5. 5.
    Pawlowska AM, Camangi F, Braca A (2010) Quali-quantitative analysis of flavonoids of Cornus mas L. (Cornaceae) fruits. Food Chem 119(3):1257–1261. CrossRefGoogle Scholar
  6. 6.
    Hassanpour H, Yousef H, Jafar H, Mohammad A (2011) Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Sci Hortic 129:459–463. CrossRefGoogle Scholar
  7. 7.
    Dinda B, Kyriakopoulos AM, Dinda S, Zoumpourlis V, Thomaidis NS, Velegraki A, Markopoulos C, Dinda M (2016) Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J Ethnopharmacol 193:670–690. CrossRefPubMedGoogle Scholar
  8. 8.
    Ercisli S, Orhan E, Esitken A, Yildirim N, Agar G (2008) Relationships among some cornelian cherry genotypes (Cornus mas L.) based on RAPD analysis. Genet Resour Crop Evol 55:613–618. CrossRefGoogle Scholar
  9. 9.
    Bijelić SM, Gološin BR, Todorović JIN, Cerović SB, Popović BM (2011) Physicochemical fruit characteristics of cornelian cherry (Cornus mas L.) genotypes from Serbia. Hort Science 46(6):849–853Google Scholar
  10. 10.
    Drkenda P, Spahić A, Begić-Akagić A, Gaši F, Vranac A, Hudina M, Blanke M (2014) Pomological characteristics of some autochthonous genotypes of cornelian cherry (Cornus mas L.) in Bosnia and Herzegovina. Erwerbs-obstbau 56:59–66. CrossRefGoogle Scholar
  11. 11.
    Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28:49–55Google Scholar
  12. 12.
    Lee J, Durst RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 88(5):1269–1278PubMedGoogle Scholar
  13. 13.
    Benzie IF, Strain J (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27. CrossRefPubMedGoogle Scholar
  14. 14.
    Donno D, Boggia R, Zunin P, Cerutti A, Guido M, Mellano M, Prgomet Z, Beccaro G (2016) Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: an innovative technique in food supplement quality control. J Food Sci Technol 53:1071–1083. CrossRefPubMedGoogle Scholar
  15. 15.
    Mok DK, Chau F-T (2006) Chemical information of Chinese medicines: a challenge to chemist. Chemometr Intell Lab Syst 82:210–217. CrossRefGoogle Scholar
  16. 16.
    Donno D, Cerutti A, Prgomet I, Mellano M, Beccaro G (2015) Foodomics for mulberry fruit (Morus spp.): analytical fingerprint as antioxidants' and health properties' determination tool. Food Res Int 69:179–188. CrossRefGoogle Scholar
  17. 17.
    Demir F, Kalyoncu IH (2003) Some nutritional, pomological and physical properties of cornelian cherry (Cornus mas L.). J Food Eng 60:335–341. CrossRefGoogle Scholar
  18. 18.
    Güleryüz M, Bolat I, Pirlak L (1998) Selection of table cornelian cherry (Cornus mas L.) types in Çoruh valley. Turk J Agric For 22:357–364Google Scholar
  19. 19.
    Tural S, Koca I (2008) Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Sci Hortic 116:362–366. CrossRefGoogle Scholar
  20. 20.
    Donno D, Cerutti A, Mellano M, Prgomet Z, Beccaro G (2016) Serviceberry, a berry fruit with growing interest of industry: physicochemical and quali-quantitative health-related compound characterisation. J Funct Foods 26:157–166. CrossRefGoogle Scholar
  21. 21.
    Nsimba RY, Kikuzaki H, Konishi Y (2008) Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem 106(2):760–766. CrossRefGoogle Scholar
  22. 22.
    Moldovan B, David L (2014) Influence of temperature and preserving agents on the stability of cornelian cherries anthocyanins. Molecules 19(6):8177–8188. CrossRefPubMedGoogle Scholar
  23. 23.
    Ribeiro LO, Pereira RN, Tonon RV, Cabral LMC, Santiago MCP, Vicente AA, Teixeira JAC, Matta VM, Freitas SP (2018) Antioxidant compounds recovery from Juçara residue by thermal assisted extraction. Plant Foods Hum Nutr 73:68–73. CrossRefPubMedGoogle Scholar
  24. 24.
    Yilmaz KU, Ercisli S, Zengin Y, Sengul M, Kafkas EY (2009) Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chem 114(2):408–412. CrossRefGoogle Scholar
  25. 25.
    Soto-Vaca A, Gutierrez A, Losso JN, Xu Z, Finley JW (2012) Evolution of phenolic compounds from color and flavor problems to health benefits. J Agric Food Chem 60(27):6658–6677. CrossRefPubMedGoogle Scholar
  26. 26.
    López-Alarcón C, Denicola A (2013) Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal Chim Acta 763:1–10. CrossRefPubMedGoogle Scholar
  27. 27.
    Kamiloglu Ö, Ercisli S, Sengül M, Toplu C, Serçe S (2009) Total phenolics and antioxidant activity of jujube (Zizyphus jujube mill.) genotypes selected from Turkey. Afr J Biotechnol 8(2):303–307Google Scholar
  28. 28.
    Pantelidis G, Vasilakakis M, Manganaris G, Diamantidis G (2007) Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries. Food Chem 102(3):777–783. CrossRefGoogle Scholar
  29. 29.
    Borges G, Degeneve A, Mullen W, Crozier A (2009) Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J Agric Food Chem 58(7):3901–3909. CrossRefGoogle Scholar
  30. 30.
    Monsen ER (2000) Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids. J Am Diet Assoc 100(6):637–640CrossRefPubMedGoogle Scholar
  31. 31.
    de Cássisa da Silveira e Sá R, Andrade LN, de Sousa DP (2013) A review on anti-inflammatory activity of monoterpenes. Molecules 18(1):1227–1254. CrossRefGoogle Scholar
  32. 32.
    Krivoruchko E, Samoilova V, Kovalev V (2011) Constituent composition of essential oil from Cornus mas flowers. Chem Nat Compd 47(4):646–647. CrossRefGoogle Scholar
  33. 33.
    Tosun M, Ercisli S, Karlidag H, Sengul M (2009) Characterization of red raspberry (Rubus idaeus L.) genotypes for their physicochemical properties. J Food Sci 74(7):575–579. CrossRefGoogle Scholar
  34. 34.
    Jimenez-Garcia SN, Guevara-Gonzalez RG, Miranda-Lopez R, Feregrino-Perez AA, Torres-Pacheco I, Vazquez-Cruz MA (2013) Functional properties and quality characteristics of bioactive compounds in berries: biochemistry, biotechnology, and genomics. Food Res Int 54(1):1195–1207. CrossRefGoogle Scholar
  35. 35.
    Battino M, Mezzetti B (2006) Update on fruit antioxidant capacity: a key tool for Mediterranean diet. Public Health Nutr 9:1099–1103. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marta De Biaggi
    • 1
  • Dario Donno
    • 1
  • Maria Gabriella Mellano
    • 1
  • Isidoro Riondato
    • 1
  • Ernest N. Rakotoniaina
    • 2
  • Gabriele L. Beccaro
    • 1
  1. 1.Dipartimento di Scienze Agrarie, Forestali e AlimentariUniversità degli Studi di TorinoGrugliasco (TO)Italy
  2. 2.Département de Biologie et Écologie Végétales, Faculté des SciencesUniversité d’AntananarivoAntananarivoMadagascar

Personalised recommendations