Plant Foods for Human Nutrition

, Volume 70, Issue 3, pp 338–343 | Cite as

Growth Impairment Caused by Raw Linseed Consumption: Can Trypsin Inhibitors Be Harmful for Health?

  • Katya Anaya
  • Ana C. B. Cruz
  • Dayse C. S. Cunha
  • Sandra M. N. Monteiro
  • Elizeu A. dos Santos
Original Paper


Linseed (Linun usitatissimum L.) is an important oilseed whose nutritional value can be impaired due to presence of antinutritional factors and low protein digestibility. Protein fractions from raw linseed meal were extracted, isolated and analyzed in vitro and in vivo. Globulins, the major protein fraction of linseed, showed low in vitro susceptibility to trypsin and chymotrypsin, but its in vivo digestibility was 93.2 %. Albumin fraction had high trypsin inhibition activity (5250 Inhibition Units g−1) and presented low molecular mass protein bands, similar to known trypsin inhibitors. Raw linseed consumption caused negative effects on rat growth and reduction of intestinal villi. Results indicate that raw linseed meal must not be used as an exclusive source of protein regardless of the major proteins have high digestibility; digestive enzymes inhibitors in raw linseed probably reduces the protein utilization.


Linseed Trypsin inhibitors Globulins Albumins Antinutritional factors Protein digestibility 





Group I – casein group


Group II – raw linseed group


Human salivary amylase


Inhibition unit


Net protein ratio


Pancreatic amylase


Pancreatic elastase


Protein efficiency ratio


Sodium dodecyl sulphate polyacrylamide gel electrophoresis




True digestibility



Our sincere acknowledgements to Maurício Pereira de Sales, a great researcher and professor (in memoriam). The authors also gratefully acknowledge Ana Heloneida A. Morais and Adriana F. Uchôa for fruitful discussions and generous help. This work was supported by the Brazilian agencies FINEP, CNPq, CAPES and BNB-FUNDECI.

Conflict of Interest

The authors declare no competing financial interest.

Supplementary material

11130_2015_500_MOESM1_ESM.pdf (120 kb)
ESM 1 (PDF 120 kb)


  1. 1.
    Bhatty RS (1995) Nutrient composition of whole linseed and linseed meal. In: Cunnane SC, Thompson LU (eds) Linseed in human nutrition. AOCS Press, Champaign, IL, USAGoogle Scholar
  2. 2.
    Chung MWY, Lei B, Li-Chan ECY (2005) Isolation and structural characterization of the major protein fraction from NorMan flaxseed (Linum usitatissimum L.). Food Chem 90:271–279. doi: 10.1016/j.foodchem.2003.07.038 CrossRefGoogle Scholar
  3. 3.
    Friedman M, Brandon DL, Bates AH, Hymowitz T (1991) Comparison of a commercial soybean cultivar and an isoline lacking the Kunitz trypsin-inhibitor - composition, nutritional-value, and effects of heating. J Agric Food Chem 39:327–335. doi: 10.1021/jf00002a022 CrossRefGoogle Scholar
  4. 4.
    Oomah BD, Mazza G (1993) Flaxseed proteins - a review. Food Chem 48:109–114. doi: 10.1016/0308-8146(93)90043-F CrossRefGoogle Scholar
  5. 5.
    Shewry PR (1995) Plant storage proteins. Biol Rev 70:375–426Google Scholar
  6. 6.
    Vassel B, Nesbitt LL (1945) The nitrogenous constituents of flaxseed. J Biol Chem 159:571–584Google Scholar
  7. 7.
    Holm H, Hanssen LE, Krogdahl A, Florholmen J (1988) High and low inhibitor soybean meals affect human duodenal proteinase activity differently - in vivo comparison with bovine serum-albumin. J Nutr 118:515–520Google Scholar
  8. 8.
    Liener IE (1994) Implications of antinutritional components in soybean foods. Crit Rev Food Sci Nutr 34:31–67. doi: 10.1080/10408399409527649
  9. 9.
    Nti CA, Plahar WA (1996) Cowpea inhibition of human and bovine protease activities and the effects of processing. Food Control 7:129–133. doi: 10.1016/0956-7135(96)00017-5 CrossRefGoogle Scholar
  10. 10.
    Alzueta C, Ortiz LT, Rebole A, Rodriguez ML, Centeno C, Trevino J (2002) Effects of removal of mucilage and enzyme or sepiolite supplement on the nutrient digestibility and metabolyzable energy of a diet containing linseed in broiler chickens. Anim Feed Sci Technol 97:169–181. doi: 10.1016/S0377-8401(02)00030-5 CrossRefGoogle Scholar
  11. 11.
    Lorenc-Kubis I, Kowalska JB, Pochroń Zuzło A, Wilusz T (2001) Isolation and amino acid sequence of a serine proteinase inhibitor from common flax (Linum usitatissimum) seeds. Chembiochem 2:41–51. doi: 10.1002/1439-7633(20010105)2:1<45::AID-CBIC45>3.0.CO;2-# CrossRefGoogle Scholar
  12. 12.
    Xavier-Filho J, Campos FAP, Ary MB, Silva CP, Carvalho MMM, Macedo MLR, Lemos FJA, Grant G (1989) Poor correlation between the levels of proteinase-inhibitors found in seeds of different cultivars of cowpea (Vigna-Unguiculata) and the resistance susceptibility to predation by Callosobruchusmaculatus. J Agric Food Chem 37:1139–1143. doi: 10.1021/jf00088a071
  13. 13.
    Rassam M, Laing WA (2006) The interaction of the 11S globulin-like protein of kiwifruit seeds with pepsin. Plant Sci 171:663–669. doi: 10.1016/j.plantsci.2006.06.014 CrossRefGoogle Scholar
  14. 14.
    Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  15. 15.
    Debray H, Decout D, Strecker G, Spik G, Montreuil J (1981) Specificity of 12 lectins towards oligosaccharides and glycopeptides related to N-glycosylproteins. Eur J Biochem 117:41–55. doi: 10.1111/j.1432-1033.1981.tb06300.x CrossRefGoogle Scholar
  16. 16.
    Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680–685. doi: 10.1038/227680a0 CrossRefGoogle Scholar
  17. 17.
    Reeves PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127(5, Suppl):838S–841SGoogle Scholar
  18. 18.
    AOAC (1984) Official methods for analysis of the association of official analytical chemists, 14th edn. AOAC International, Arlington, VA, USAGoogle Scholar
  19. 19.
    Chick H, Hutchinson JC, Jackson HM (1935) The biological value of proteins: further investigation of the balance sheet method. Biochem J 29:1702–1711CrossRefGoogle Scholar
  20. 20.
    Pellet PR, Young VL (1980) Nutritional evaluation of protein foods. Food Nutr Bull 4:154Google Scholar
  21. 21.
    Deshpande SS, Nielsen SS (1987) In vitro enzymatic-hydrolysis of phaseolin, the major storage protein of Phaseolus vulgaris L. J Food Sci 52:1326–1329. doi: 10.1111/j.1365-2621.1987.tb14074.x
  22. 22.
    Liener IE, Thompson RM (1980) In vitro and in vivo studies on the digestibility of the major storage protein of the navy bean (Phaseolusvulgaris). Plant Foods Hum Nutr 30:13–25Google Scholar
  23. 23.
    Agudelo RA, Alarcon OM, Fliedel G (1998) Effect of cooking on the protein digestibility of sorghum. Arch Latinoam Nutr 48:47–51Google Scholar
  24. 24.
    Araújo AH, Cardoso PCB, Pereira RA, Lima LM, Oliveira AS, Miranda MRA, Xavier-Filho J, Sales MP (2002) In vitro digestibility of globulins from cowpea (Vigna unguiculata) and xerophitic algaroba (Prosopis juliflora) seeds by mammalian digestive proteinases: a comparative study. Food Chem 78:143–147. doi: 10.1016/S0956-7135(03)00021-5
  25. 25.
    Lima LM, Araujo AH, Oliveira AS, Pereira RA, Miranda MRA, Sales MP (2004) Comparative digestibility and the inhibition of mammalian digestive enzymes from mature and immature cowpea (Vigna unguiculata (L.) Walp.) seeds. Food Control 15:107–110. doi: 10.1016/S0956-7135(03)00021-5
  26. 26.
    Shashikala M, Prakash J (1995) In vitro digestibility of proteins in black gram (Phaseolus mungo) and green gram (Phaseolus radiatus) papads. Nahrung 39:42–47. doi: 10.1002/food.19950390105
  27. 27.
    Petzke KJ, Ezeagu IE, Proll J, Akinsoyinu AO, Metges CC (1997) Amino acid composition, available lysine content and in vitro protein digestibility of selected tropical crop seeds. Plant Foods Hum Nutr 50:151–162CrossRefGoogle Scholar
  28. 28.
    Fang EF, Hassanien AAE, Wong JH, Bah CSF, Soliman SS, Ng TB (2010) Purification and modes of antifungal action by Vicia faba cv. Egypt trypsin inhibitor. J Agric Food Chem 58:10729–10735. doi: 10.1021/jf102277k CrossRefGoogle Scholar
  29. 29.
    Cruz ACB, Massena FS, Migliolo L, Macedo LLP, Monteiro NKV, Oliveira AS, Macedo FP, Uchoa AF, Grossi-De-Sá MF, Vasconcelos IM, Murad AM, Franco OL, Santos EA (2013) Bioinsecticidal activity of a novel Kunitz trypsin inhibitor from Catanduva (Piptadenia moniliformis) seeds. Plant Phys Biochem 70:61–68. doi: 10.1016/j.plaphy.2013.04.023 CrossRefGoogle Scholar
  30. 30.
    Zhicun X, Yeming C, Caimeng Z, Xiangzhen K, Yufei H (2012) The heat-induced protein aggregate correlated with trypsin inhibitor inactivation in soymilk processing. J Agric Food Chem 60:8012–8019. doi: 10.1021/jf3021249 CrossRefGoogle Scholar
  31. 31.
    Liener IE (1985) The nutritional significance of naturally occurring toxins in plant foodstuffs. Toxicon 23:544Google Scholar
  32. 32.
    Giacomino S, Peñas E, Ferreyra V, Pellegrino N, Fournier M, Apro N, Olivera Carrión M, Frias J (2013) Extruded flaxseed meal enhances the nutritional quality of cereal-based products. Plant Foods Hum Nutr 68:131–136. doi: 10.1007/s11130-013-0359-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Katya Anaya
    • 1
    • 3
  • Ana C. B. Cruz
    • 1
  • Dayse C. S. Cunha
    • 1
  • Sandra M. N. Monteiro
    • 2
  • Elizeu A. dos Santos
    • 1
  1. 1.Departamento de Bioquímica, Centro de BiociênciasUniversidade Federal do Rio Grande do NorteNatalBrazil
  2. 2.Departamento de Nutrição, Centro de Ciências da SaúdeUniversidade Federal do Rio Grande do NorteNatalBrazil
  3. 3.Faculdade de Ciências da Saúde do TrairiUniversidade Federal do Rio Grande do NorteSanta CruzBrazil

Personalised recommendations