Plant Foods for Human Nutrition

, Volume 70, Issue 1, pp 42–49 | Cite as

Obtaining from Grape Pomace an Enzymatic Extract with Anti-inflammatory Properties

  • B. Rodríguez-Morgado
  • M. Candiracci
  • C. Santa-María
  • E. Revilla
  • B. Gordillo
  • J. Parrado
  • A. Castaño
Original Paper


Grape pomace, a winemaking industry by-product, is a rich source of bioactive dietary compounds. Using proteases we have developed an enzymatic process for obtaining a water-soluble extract (GP-EE) that contains biomolecules such as peptides, carbohydrates, lipids and polyphenols in soluble form. Of especial interest is its high polyphenol content (12 %), of which 77 % are flavonoids and 33 % are phenolic acids. The present study evaluates in vitro the potential anti-inflammatory effect of GP-EE by monitoring the expression of inflammatory molecules on N13 microglia cells stimulated with lipopolysaccharide (LPS). GP-EE decreases the mRNA levels of the inflammatory molecules studied. The molecules under study were as follows: inducible nitric oxide synthase (iNOS), tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), the ionized calcium binding adaptor molecule-1(Iba-1) and the Toll like receptor-4 (TLR-4), as well as the iNOS protein level in LPS-stimulated microglia. Our findings suggest that, as a result of its ability to regulate excessive microglial activation, GP-EE possesses anti-inflammatory properties. Therefore, acting as a chemopreventive agent, it may be of therapeutic interest in neurodegenerative diseases involving neuroinflammation. We can, therefore, propose GP-EE as a useful natural extract and one that would be beneficial to apply in the field of functional foods.


Grape pomace Enzymatic extract Polyphenols Anti-inflammatory Neurodegeneration 



Grape pomace


Grape pomace enzymatic extract




Inducible nitric oxide synthase


Tumor necrosis factor- alpha




Toll like receptor-4


Ionized calcium binding adaptor molecule-1


Ultra-high performance liquid chromatography


Reverse transcription



This research was supported by a grant of the Ministerio de Innovación y Ciencia, Spain (TRACE 2009-0263-01).

Conflict of Interest

The authors declare no conflicting interests or financial disclosures.


  1. 1.
    Rubilar M, Pinelo M, Shene C, Sineiro J, Núñez MJ (2007) Separation and HPLC-MS identification of phenolic antioxidants from agricultural residues: almond hulls and grape pomace. J Agric Food Chem 55:10101–10109CrossRefGoogle Scholar
  2. 2.
    Ariel L, Fontana R, Antoniolli A, Bottini R (2013) Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. J Agric Food Chem 61:8987–9003CrossRefGoogle Scholar
  3. 3.
    Luque-Rodríguez JM, Pérez-Juan P, Luque de Castro MD (2006) Extraction of polyphenols from vine shoots of Vitis vinifera by superheated ethanol-water mixtures. J Agric Food Chem 54:8775–8781CrossRefGoogle Scholar
  4. 4.
    Monagas M, Hernández-Ledesma B, Gómez-Cordovés C, Bartolomé B (2006) Commercial dietary ingredients from Vitis vinifera L. leaves and grape skins: antioxidant and chemical characterization. J Agric Food Chem 54:319–327CrossRefGoogle Scholar
  5. 5.
    Kashif Ghafoor K, AL-Juhaimi FY, Choi YE (2012) Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds. Plant Foods Hum Nutr 67:407–414Google Scholar
  6. 6.
    Xia EQ, Deng GF, Guo YJ, Li HB (2010) Biological activities of polyphenols from grapes. Int J Mol Sci 11:622–646CrossRefGoogle Scholar
  7. 7.
    McGeer PL, McGeer EG (2004) Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 1035:104–116CrossRefGoogle Scholar
  8. 8.
    Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357–365Google Scholar
  9. 9.
    Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69CrossRefGoogle Scholar
  10. 10.
    Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7:354–365CrossRefGoogle Scholar
  11. 11.
    Candiracci M, Piatti E, Dominguez-Barragán M, García-Antrás D, Morgado B, Ruano D, Gutiérrez JF, Parrado J, Castaño A (2012) Anti-inflammatory activity of a honey flavonoid extract on lipopolysaccharide-activated N13 microglial cells. J Agric Food Chem 60(50):12304–12311CrossRefGoogle Scholar
  12. 12.
    Bi XL, Yang J, Dong YX, Wang JM, Cui YH, Ikeshima T, Zhao YQ, Wu CF (2005) Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. Int Immunopharmacol 5:185–193CrossRefGoogle Scholar
  13. 13.
    Lu X, Ma L, Ruan L, Kong Y, Mou H, Zhang Z, Wang Z, Wang JM, Le Y (2010) Resveratrol differentially modulates inflammatory responses of microglia and astrocytes. J Neuroinflammation 7:46–60CrossRefGoogle Scholar
  14. 14.
    Ha SK, Moon E, Kim S (2010) Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci Lett 485:143–147CrossRefGoogle Scholar
  15. 15.
    AOAC (1990) Official methods of analysis, 14th edn. DC. Association of Official Analytical Chemists, WashingtonGoogle Scholar
  16. 16.
    Bautista J, Hernandez-Pinzón I, Alaiz M, Parrado J, Millan F (1996) Low molecular weight sunflower protein hydrolysate with low concentration in aromatic acids. J Agric Food Chem 44:967–971CrossRefGoogle Scholar
  17. 17.
    Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  18. 18.
    Righi M, Mori L, De Libero G, Sironi M, Biondi A, Mantovani A, Donini SD, Ricciardi-Castagnoli P (1989) Monokine production by microglial cell clones. Eur J Immunol 19:1443–1448CrossRefGoogle Scholar
  19. 19.
    Gavilán MP, Castaño A, Torres M, Revilla E, Caballero C, Jiménez S, García-Martínez A, Parrado J, Vitorica J, Ruano D (2009) Age-related increase in the immunoproteasome content in rat hippocampus: molecular and functional aspects. J Neurochem 108:260–270CrossRefGoogle Scholar
  20. 20.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  21. 21.
    Ruano D, Revilla E, Gavilán MP, Vizuete ML, Pintado C, Vitorica J, Castaño A (2006) Role of p38 and iNOS in the in vivo dopaminergic cells degeneration induced by inflammatory processes after LPS injection. Neuroscience 140:1157–1168CrossRefGoogle Scholar
  22. 22.
    Kammerer D, Aus A, Schieber A, Carle R (2005) A novel process for the recovery of polyphenols from grape (Vitis vinifera L) pomace. J Food Sci 70:157–163CrossRefGoogle Scholar
  23. 23.
    Gbogouri GA, Linder M, Fanni J, Parmentier M (2006) Analysis of lipids extracted from salmon (Salmo salar) heads by commercial proteolytic enzymes. Eur J Lipid Sci Technol 108:766–775CrossRefGoogle Scholar
  24. 24.
    Rodriguez-Rodriguez R, Justo ML, Claro CM, Vila E, Parrado J, Herrera MD, Alvarez de Sotomayor M (2012) Endothelium-dependent vasodilator and antioxidant properties of a novel enzymatic extract of grape pomace from wine industrial waste. Food Chem 135:1044–1051CrossRefGoogle Scholar
  25. 25.
    Yao H, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong R, Chen SS (2004) Flavonoids in food and their health benefits. Plant Foods Hum Nutr 59:113–122CrossRefGoogle Scholar
  26. 26.
    Beutler B (2002) TLR-4 as the mammalian endotoxin sensor. Curr Top Microbiol Immunol 270:109–120Google Scholar
  27. 27.
    Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba-1, ionized calcium-binding adapter molecule-1, after transient focal cerebral ischemia in rat brain. Stroke 32:1208–1215CrossRefGoogle Scholar
  28. 28.
    Jeong EJ, Seo H, Yang H, Kim J, Sung SH, Kim YC (2012) Anti-inflammatory phenolics isolated from Juniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264.7 macrophage cells. J Enzym Inhib Med Chem 27:875–879CrossRefGoogle Scholar
  29. 29.
    Gómez-Serranillos MP, Martín S, Ortega T, Palomino OM, Prodanov M, Vacas V, Hernández T, Estrella I, Carretero ME (2009) Study of red wine neuroprotection on astrocytes. Plant Foods Hum Nutr 64:238–243CrossRefGoogle Scholar
  30. 30.
    Hernández-Ledesma B, Hsieh CC, de Lumen BO (2013) Chemopreventive properties of Peptide Lunasin: a review. Protein Pept Lett 20(4):424–432CrossRefGoogle Scholar
  31. 31.
    Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145CrossRefGoogle Scholar
  32. 32.
    Wang J, Weina B, Chen A, Freire D, Vempati P, Zhao W, Gong B, Janle EM, Chen T-Y, Ferruzzi MG, Schmeidler J, Ho L, Pasinetti GMJ (2014) Targeting multiple pathogenic mechanisms with polyphenols for the treatment of Alzheimer’s disease experimental approach and therapeutic implications. Front Aging Neurosci 6:42. doi: 10.3389/fnagi.2014.00042 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • B. Rodríguez-Morgado
    • 1
  • M. Candiracci
    • 3
  • C. Santa-María
    • 1
  • E. Revilla
    • 1
  • B. Gordillo
    • 2
  • J. Parrado
    • 1
  • A. Castaño
    • 1
  1. 1.Departamento de Bioquímica y Biología MolecularUniversidad de SevilllaSevillaSpain
  2. 2.Food Colour & Quality Lab, Department of Nutrition & Food Science. Facultad de FarmaciaUniversidad de SevillaSevillaSpain
  3. 3.Brigham and Women HospitalBostonUSA

Personalised recommendations