Plant Foods for Human Nutrition

, Volume 69, Issue 2, pp 93–100 | Cite as

Combined Effect of Plant Sterols and Dietary Fiber for the Treatment of Hypercholesterolemia

  • Ashley Castellanos-Jankiewicz
  • Laura del Bosque-Plata
  • M. Elizabeth Tejero
Review Article


Hypercholesterolemia is a major contributor for disease burden in both the developed and developing world and an important risk factor for cardiovascular diseases (CVD). Phytosterols (PhS) and dietary fiber (DF) act as low density lipoprotein cholesterol (LDL-C) lowering agents, offering an effective treatment against high blood cholesterol and CVD. The aim of this review was to consider clinical evidence that analyzed the combination of PhS and DF in a cereal carrier for lowering LDL-C. Electronic database searches were carried out to identify peer-reviewed journal articles, from which five intervention studies that combined both components in a cereal carrier were identified and included in the present review. LDL-C lowering effects varied widely among studies, due to large heterogeneity in study design, subject baseline characteristics, length of the interventions, PhS and DF dosage and type of DF used. In relation to a time of intake, three studies suggested a frequency or distribution of the product’s consumption during the day, while two studies did not consider this factor. Overall, the selected studies found significant differences on LDL-C concentrations, although not all of them reached the expected outcomes. Future research should be conducted to explore the effect that different types of DF exert on LDL-C when combined with PhS, and to analyze the effect of the product’s time of intake in order to suggest an optimal moment of the day for its consumption.


Plant sterols Dietary fiber Hypercholesterolemia Cardiovascular disease Low density lipoprotein cholesterol 

List of Abbreviations


Bile acids




Cardiovascular disease


7α-cholesterol hydroxylase


Dietary fiber


Low density lipoprotein cholesterol


Plant sterols and/or stanols



AC-J received financial support from the Coordinating Committee of National Institutes of Health and High Specialty Hospitals (PROBEI). MET was supported by the Nestlé-INMEGEN Chair for Nutrigenomics.

Conflict of Interest

All authors have read and approved the final manuscript. The authors declare no conflict of interest.

Compliance with Ethics Requirements

AC-J, LB-P and MET have no conflict of interest to declare.

This article does not contain any studies with human or animal subjects.


  1. 1.
    WHO, World Health Statistics (2011) Noncommunicable diseases: Global Health Observatory, Raised Cholesterol. Accessed December 8 2012
  2. 2.
    Stone NJ, Robinson J, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Wilson PWF (2013) 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 00:000–000Google Scholar
  3. 3.
    Gylling H, Plat J, Turley S, Ginsberg HN, Ellegård L, Jessup W, Jones PJ, Lütjohann D, Maerz W, Masana L, Silbernagel G, Staels B, Borén J, Catapano AL, De Backer G, Deanfield J, Descamps OS, Kovanen PT, Riccardi G, Tokgözoglu L, Chapman MJ, European Atherosclerosis Society Consensus Panel on Phytosterols (2013) Plant sterols and plant stanols in the management of dyslipidemia and prevention of cardiovascular disease. Atheroscler 232(2):346–360CrossRefGoogle Scholar
  4. 4.
    Ryan E, Galvin K, O’Connor TP, Maguire AR, O’Brien NM (2007) Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum Nutr 62(3):85–91CrossRefGoogle Scholar
  5. 5.
    Trautwein EA, Duchateau GS, Lin Y, Mel’nikov SM, Molhuizen HO, Ntanios FY (2003) Proposed mechanisms of cholesterol-lowering action of plant sterols. Eur J Lipid Sci Technol 105:171–185CrossRefGoogle Scholar
  6. 6.
    Ostlund RE Jr (2002) Phytosterols in human nutrition. Annu Rev Nutr 22:533–549CrossRefGoogle Scholar
  7. 7.
    Amiot MJ, Knol D, Cardinault N, Nowicki M, Bott R, Antona C, Borel P, Bernard J, Duchateau G, Lairon D (2011) Phytosterol ester processing in the small intestine: impact on cholesterol availability for absorption and chylomicron cholesterol incorporation in healthy humans. J Lipid Res 52:1256–1264CrossRefGoogle Scholar
  8. 8.
    Cohn JS, Kamili A, Wat E, Chung RWS, Tandy S (2010) Reduction in intestinal cholesterol absorption by various food components: mechanisms and implications. Atherosclerosis Suppl 11:45–48CrossRefGoogle Scholar
  9. 9.
    Gupta AK, Savopoulos CG, Ahuja J, Hatzitolios AI (2011) Role of phytosterols in lipid-lowering: current perspectives. QJM 104:301–308CrossRefGoogle Scholar
  10. 10.
    Fernández C, Martín M, Gómez-Coronado D, Lasunción MA (2003) Efecto de los fitoesteroles sobre la biosíntesis de colesterol y la proliferación en células humanas. Clin Investig Arterioscler 15:175–183, SpanishCrossRefGoogle Scholar
  11. 11.
    Racette SB, Lin X, Lefevre M, Anderson Spearie C, Most MM, Ma L, Ostlund RE Jr (2010) Dose effects of dietary phytosterols on cholesterol metabolism: a controlled feeding study. Am J Clin Nutr 91:32–38CrossRefGoogle Scholar
  12. 12.
    Nestel P, Cehun M, Pomeroy S, Abbey M, Weldon G (2001) Cholesterol-lowering effects of plant sterol esters and non-esterified stanols in margarine butter and low-fat foods. Eur J Clin Nutr 55:1084–1090CrossRefGoogle Scholar
  13. 13.
    National Institutes of Health. National Heart, Lung and Blood Institute. National Cholesterol Education Program (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on: detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Final report. NIH Publication No. 02–5215Google Scholar
  14. 14.
    US Food and Drug Administration (2005) Federal Register of July 21 (70 FR 41958). 21 CFR Ch. I (4–1–10 Edition)Google Scholar
  15. 15.
    Demonty I, Ras RT, van der Knaap HC, Duchateau GS, Meijer L, Zock PL, Geleijnse JM, Trautwein EA (2009) Continuous dose–response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J Nutr 139:271–284CrossRefGoogle Scholar
  16. 16.
    Musa-Veloso K, Poon TH, Elliot JA, Chung C (2011) A comparison of the LDL cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: results of a meta-analysis of randomized, placebo-controlled trials. Prostaglandins Leukot Essent Fatty Acids 85:9–28CrossRefGoogle Scholar
  17. 17.
    Riccioni G, Sblendorio V, Gemello E, Di Bello B, Scotti L, Cusenza S, D’Orazio N (2012) Dietary fibers and cardiometabolic diseases. Int J Mol Sci 13:1524–1540CrossRefGoogle Scholar
  18. 18.
    Brown L, Rosner B, Willett WW, Sacks FM (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69:30–42Google Scholar
  19. 19.
    Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67(4):188–205CrossRefGoogle Scholar
  20. 20.
    Estruch R, Martínez-González MA, Corella D, Basora-Gallisá J, Ruiz-Gutiérrez V, Covas MI, Fiol M, Gómez-Gracia E, López-Sabater MC, Escoda R, Pena MA, Diez-Espino J, Lahoz C, Lapetra J, Sáez G, Ros E, PREDIMED Study Investigators (2009) Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J Epidemiol Community Health 63(7):582–588CrossRefGoogle Scholar
  21. 21.
    Burger KNJ, Beulens JWJ, van der Schouw YT, Sluijs I, Spijkerman AMW, Sluik D, Boeing H, Kaaks R, Teucher B, Dethlefsen C, Overvad K, Tjønneland A, Kyrø C, Barricarte A, Bendinelli B, Krogh V, Tumino R, Sacerdote C, Mattiello A, Nilsson PM, Orho-Melander M, Rolandsson O, Huerta JM, Crowe F, Allen N, Nöthlings U (2012) Dietary fiber, carbohydrate quality and quantity, and mortality risk of individuals with diabetes mellitus. PLoS One 7(8):e43127CrossRefGoogle Scholar
  22. 22.
    Lairon D, Arnault N, Bertrais S, Planells R, Clero E, Hercberg S, Boutron-Ruault MC (2005) Dietary fiber intake and risk factors for cardiovascular disease in French adults. Am J Clin Nutr 82(6):1185–1194Google Scholar
  23. 23.
    Sánchez-Muniz FJ (2012) Dietary fibre and cardiovascular health. Nutr Hosp 27(1):31–45Google Scholar
  24. 24.
    AbuMweis SS, Barake R, Jones PJ (2008) Plant sterols/stanols as cholesterol lowering agents: a meta-analysis of randomized controlled trials. Food Nutr Res 52:1–17CrossRefGoogle Scholar
  25. 25.
    Maki KC, Lawless AL, Reeves MS, Kelley KM, Dicklin MR, Jenks BH, Shneyvas E, Brooks JR (2013) Lipid effects of a dietary supplement softgel capsule containing plant sterols/stanols in primary hypercholesterolemia. Nutrition 29:96–100CrossRefGoogle Scholar
  26. 26.
    Seki S, Abe T, Hidaka I, Kojima K, Yoshino H, Aoyama T, Okazaki M, Kondo K (2003) Effects of phytosterol ester-enriched vegetable oil on serum cholesterol and assessment of safety in healthy men. J Oleo Sci 52(4):205–213CrossRefGoogle Scholar
  27. 27.
    Quílez J, Rafecas M, Brufau G, García-Lorda P, Megías I, Bulló M, Ruiz JA, Salas-Salvadó J (2003) Bakery products enriched with phytosterol esters, a-tocopherol and B-carotene decrease plasma LDL-cholesterol and maintain plasma B-carotene concentrations in normocholesterolemic men and women. J Nutr 133:3103–3109Google Scholar
  28. 28.
    Clifton PM, Noakes M, Sullivan D, Erichsen N, Ross D, Annison G, Fassoulakis A, Cehun M, Nestel P (2004) Cholesterol-lowering effects of plant sterol esters differ in milk, yoghurt, bread and cereal. Eur J Clin Nutr 58:503–509CrossRefGoogle Scholar
  29. 29.
    Shrestha S, Volek JS, Udani J, Wood RJ, Greene CM, Aggarwal D, Contois JH, Kavoussi B, Fernandez ML (2006) A combination therapy including psyllium and plant sterols lowers LDL cholesterol by modifying lipoprotein metabolism in hypercholesterolemic individuals. J Nutr 136:2492–2497Google Scholar
  30. 30.
    Söderholm PP, Alfthan G, Koskela AH, Adlercreutz H, Tikkanen MJ (2012) The effect of high-fiber rye bread enriched with nonesterified plant sterols on major serum lipids and apolipoproteins in normocholesterolemic individuals. Nutr Metab Cardiovasc Dis 22(7):575–582CrossRefGoogle Scholar
  31. 31.
    Theuwissen E, Mensink RP (2007) Simultaneous intake of B-glucan and plant stanol esters affects lipid metabolism in slightly hypercholesterolemic subjects. J Nutr 137:583–588Google Scholar
  32. 32.
    Yoshida M, Vanstone CA, Parsons WD, Zawistowsky J, Jones PJ (2006) Effect of plant sterols and glucomannan on lipids in individuals with and without type II diabetes. Eur J Clin Nutr 60:529–537CrossRefGoogle Scholar
  33. 33.
    Mussner MJ, Parhofer KG, Von Bergmann K, Schwandt P, Broedl U, Otto C (2002) Effects of phytosterol ester-enriched margarine on plasma lipoproteins in mild to moderate hypercholesterolemia are related to basal cholesterol and fat intake. Metabolism 51(2):189–194CrossRefGoogle Scholar
  34. 34.
    Katan MB, Grundy SM, Jones P, Law M, Miettinen T, Paoletti R (2003) Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc 78:965–978CrossRefGoogle Scholar
  35. 35.
    Sood N, Baker WL, Coleman CI (2008) Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: systematic review and meta-analysis. Am J Clin Nutr 88:1167–1175Google Scholar
  36. 36.
    Cusack LK, Fernandez ML, Volek JS (2013) The food matrix and sterol characteristics affect the plasma cholesterol lowering of phytosterol/phytostanol. Adv Nutr 4(6):633–643CrossRefGoogle Scholar
  37. 37.
    Keszthelyi D, Knol D, Troost FJ, van Avesaat M, Foltz M, Masclee AA (2013) Time of ingestion relative to meal intake determines gastrointestinal responses to a plant sterol-containing yoghurt drink. Eur J Nutr 52(4):1417–1420Google Scholar
  38. 38.
    Doornbos AME, Meynen EM, Duchateau GS, van der Knaap HCM, Trautwein EA (2006) Intake occasion affects the serum cholesterol lowering of a plant sterol-enriched single-dose yoghurt drink in mildly hypercholesterolaemic subjects. Eur J Clin Nutr 60:325–333CrossRefGoogle Scholar
  39. 39.
    Gälman C, Angelin B, Rudling M (2005) Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. Gastroenterology 129(5):1445–1453CrossRefGoogle Scholar
  40. 40.
    Hamprecht B, Nüssler C, Lynen F (1969) Rhythmic changes of hydroxymethilglutaryl coenzyme A reductase activity in livers of fed and fasted rats. Febs Letters 4(2):117–121CrossRefGoogle Scholar
  41. 41.
    Kovar J, Lenicek M, Zimolova M, Vitek L, Jirsa M, Pitha J (2010) Regulation of diurnal variation of cholesterol 7a-hydroxylase (CYP7A1) activity in healthy subjects. Physiol Res 59:233–238Google Scholar
  42. 42.
    Lundåsen T, Gälman C, Angelin B, Rudling M (2006) Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 260(6):530–536CrossRefGoogle Scholar
  43. 43.
    Gälman C, Angelin B, Rudling M (2011) Pronounced variation in bile acid synthesis in humans is related to gender, hypertriglyceridaemia and circulating levels of fibroblast growth factor 19. J Intern Med 270:580–588CrossRefGoogle Scholar
  44. 44.
    Maury E, Ramsey KM, Bass J (2010) Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ Res 106:447–462CrossRefGoogle Scholar
  45. 45.
    Duez H, van der Veen JN, Duhem C, Pourcet B, Touvier T, Fontaine C, Derudas B, Baugé E, Havinga R, Bloks VW, Wolters H, van der Sluijs FH, Vennström B, Kuipers F, Staels B (2008) Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha. Gastroenterology 135(2):689–698CrossRefGoogle Scholar
  46. 46.
    Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Sasso GL, Moschetta A, Schibler U (2009) REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol 7:e1000181CrossRefGoogle Scholar
  47. 47.
    Brennan MA, Derbyshire E, Tiwari BK, Brennan CS (2013) Integration of β-glucan fibre rich fractions from barley and mushrooms to form healthy extruded snacks. Plant Foods Hum Nutr 68:78–82CrossRefGoogle Scholar
  48. 48.
    Zampelas A (2014) From the Maastricht meeting to the European atherosclerosis society consensus on phytosterols/phytostanols: what is new of an old story? Atherosclerosis 233(2):357–358CrossRefGoogle Scholar
  49. 49.
    Nikolic D, Katsiki N, Montalto G, Isenovic ER, Mikhailidis DP, Rizzo M (2013) Lipoprotein subfractions in metabolic syndrome and obesity: clinical significance and therapeutic approaches. Nutrients 18(3):928–948CrossRefGoogle Scholar
  50. 50.
    Sninsky JJ, Rowland CM, Baca AM, Caulfield MP, Superko HR (2013) Classification of LDL phenotypes by 4 methods of determining lipoprotein particle size. J Investig Med 61(6):942–949Google Scholar
  51. 51.
    Williams PT, Zhao XQ, Marcovina SM, Brown BG, Krauss RM (2013) Levels of cholesterol in small LDL particles predict atherosclerosis progression and incident CHD in the HDL-atherosclerosis treatment study (HATS). PLoS One 2:e56782CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ashley Castellanos-Jankiewicz
    • 1
    • 2
  • Laura del Bosque-Plata
    • 1
  • M. Elizabeth Tejero
    • 1
  1. 1.Laboratorio de Nutrigenética y NutrigenómicaInstituto Nacional de Medicina GenómicaMéxico, DFMexico
  2. 2.Escuela de NutriciónUniversidad Anáhuac MayabMéridaMéxico

Personalised recommendations