Plant Foods for Human Nutrition

, Volume 68, Issue 3, pp 229–234 | Cite as

Comparative Study of Anthocyanin and Volatile Compounds Content of Four Varieties of Mexican Roselle (Hibiscus sabdariffa L.) by Multivariable Analysis

  • G. A. Camelo-Méndez
  • J. A. Ragazzo-Sánchez
  • A. R. Jiménez-Aparicio
  • P. E. Vanegas-Espinoza
  • O. Paredes-López
  • A. A. Del Villar-Martínez
Original Paper


Anthocyanins are a group of water-soluble pigments that provide red, purple or blue color to the leaves, flowers, and fruits. In addition, benefits have been attributed to hypertension and cardiovascular diseases. This study compared the content of total anthocyanins and volatile compounds in aqueous and ethanolic extracts of four varieties of Mexican roselle, with different levels of pigmentation. The multivariable analysis of categorical data demonstrated that ethanol was the best solvent for the extraction of both anthocyanins and volatile compounds. The concentration of anthocyanin in pigmented varieties ranged from 17.3 to 32.2 mg of cyanidin 3-glucoside/g dry weight, while volatile compounds analysis showed that geraniol was the main compound in extracts from the four varieties. The principal component analysis (PCA) allowed description of results with 77.38 % of variance establishing a clear grouping for each variety in addition to similarities among some of these varieties. These results were validated by the confusion matrix obtained in the classification by the factorial discriminate analysis (FDA); it can be useful for roselle varieties classification. Small differences in anthocyanin and volatile compounds content could be detected, and it may be of interest for the food industry in order to classify a new individual into one of several groups using different variables at once.


Roselle Anthocyanins Volatile compounds Categorical multifactorial analysis Principal component analysis (PCA) and factorial discriminate analysis (DFA) 



The authors thank to Colegio Superior de Agricultura del Estado de Guerrero (CSAEGRO) and Quintín Obispo González for biological samples. One of the authors (GACM) also acknowledges the scholarship from CONACYT-Mexico and SIP-IPN.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11130_2013_360_MOESM1_ESM.doc (38 kb)
Online Resource 1 Volatile content (μg/g) in ethanol and water extracts of four Mexican varieties of roselle. (DOC 38.5 kb)
11130_2013_360_MOESM2_ESM.doc (33 kb)
Online Resource 2 Summary of volatiles (ANOVA) according to variety and interaction solventa (DOC 33 kb)
11130_2013_360_MOESM3_ESM.doc (37 kb)
Online Resource 3 Summary of canonical discriminant functions. A. Eigenvalues. B. Wilks Lambda (DOC 37 kb)
11130_2013_360_MOESM4_ESM.doc (40 kb)
Online Resource 4 Discriminant function coefficients for extract and each variety (DOC 40.5 kb)


  1. 1.
    Chang YC, Huang HP, Hsu JD, Yang SF, Wang CJ (2005) Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells. Toxicol Appl Pharmacol 205:201–212CrossRefGoogle Scholar
  2. 2.
    Hirunpanich V, Utaipat A, Morales NP, Bunyapraphatsara N, Sato H, Herunsalee A, Suthisisang C (2005) Antioxidant effects of aqueous extracts from dried calyx of Hibiscus sabdariffa L. (Roselle) in vitro using rat low-density lipoprotein (LDL). Biol Pharm Bull 28:477–481CrossRefGoogle Scholar
  3. 3.
    Lin HH, Chen JH, Kuo WH, Wang C (2007) Chemopreventive properties of Hibiscus sabdariffa L. on human gastric carcinoma cell through apoptosis induction and JNK/p38 MAPK signaling activation. Chem Biol Interact 165:59–75CrossRefGoogle Scholar
  4. 4.
    Gomes Maganha E, da Costa Halmenschlager R, Moreira Rosa R, Pegas Henriques JA, Lia de Paula Ramos AL, Saffi J (2010) Pharmacological evidences for the extracts and secondary metabolites from plants of the genus Hibiscus. Food Chem 118:1–10CrossRefGoogle Scholar
  5. 5.
    Ali BH, Al Wabel N, Blunden G (2005) Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: a review. Phytother Res 19(5):369–375CrossRefGoogle Scholar
  6. 6.
    Carvajal O, Waliszewski SM, Barradas DM, Orta Z, Hayward PM, Nolasco C, Angulo O, Sanchez R, Infanzon RM, Trujillo PRL (2005) The consumption of Hibiscus sabdariffa dried calyx ethanolic extract reduced lipid profile in rats. Plant Foods Hum Nutr 60:153–159CrossRefGoogle Scholar
  7. 7.
    Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong R, Chen SS (2004) Flavonoids in food and their health benefits. Plant Foods Hum Nutr 59(3):113–122CrossRefGoogle Scholar
  8. 8.
    Ali MB, Salih WM, Mohamed AH, Homeida AM (1991) Investigation of the antispasmodic potential of Hibiscus sabdariffa calyces. J Ethnopharmacol 31:249–257CrossRefGoogle Scholar
  9. 9.
    Dafallah AA, Al-Mustafa Z (1996) Investigation of the antiinflamatory activity of Acacia nilotica and Hibiscus sabdariffa. Am J Chin Med 24:263–269CrossRefGoogle Scholar
  10. 10.
    Chen CC, Hsu JD, Wang SF, Chiang HC, Yang MY, Kao ES, Ho YC, Wang CJ (2003) Hibiscus sabdariffa extract inhibits the development of atherosclerosis in cholesterol-fed rabbits. J Agric Food Chem 51:5465–5472Google Scholar
  11. 11.
    Christian KR, Jackson JC (2009) Changes in total phenolic and monomeric anthocyanin composition and antioxidant activity of three varieties of sorrel (Hibiscus sabdariffa) during maturity. J Food Compost Anal 22:663–667CrossRefGoogle Scholar
  12. 12.
    Shyh-Hung C, Tzou-Chi H, Chi-Tang H, Pi-Jen T (1998) Extraction, analysis, and study on the volatiles in roselle tea. J Agric Food Chem 46:1101–1105CrossRefGoogle Scholar
  13. 13.
    Pino JA, Márquez E, Marbot R (2006) Volatile constituents from tea of roselle (Hibiscus sabdariffa L.) Revista CENIC. Ciencias Químicas 37:127–129, ISSN-2221-2450Google Scholar
  14. 14.
    Ramírez-Rodrigues MM, Balaban MO, Marshall MR, Rouseff RL (2011) Hot and cold water infusion aroma profiles of Hibiscus sabdariffa: fresh compared with dried. J Food Sci 76:212–217CrossRefGoogle Scholar
  15. 15.
    Zhao X, Corrales M, Zhang C, Hu X, Ma Y, Tauscher B (2008) Composition and thermal stability of anthocyanins from chinese purple corn (Zea mays L.). J Agric Food Chem 56:10761–10766CrossRefGoogle Scholar
  16. 16.
    Solis-Solis HM, Calderon-Santoyo M, Gutierrez-Martinez P, Schorr-Galindo S, Ragazzo-Sanchez JA (2007) Discrimination of eight varieties of apricot (Prunus armeniaca) by electronic nose, LLE and SPME using GC-MS and multivariate analysis. Sens Actuator B Chem 125:415–421CrossRefGoogle Scholar
  17. 17.
    Solís-Solís HM, Calderón-Santoyo M, Schorr-Galindo S, Luna-Solano G, Ragazzo-Sánchez JA (2007) Characterization of aroma potential of apricot varieties using different extraction techniques. Food Chem 105:829–837CrossRefGoogle Scholar
  18. 18.
    Giusti MM, Ping P (2008) Analysis of anthocyanins. In: Cocaciu C (ed) Food colorants: chemical and functional properties. Taylor & Francis, Cliy-NapocaGoogle Scholar
  19. 19.
    Pascal A, Gradinaru C, Wacker U, Peterman E, Calkoen F, Irrgan K, Horton P, Ranger G, van Grondelle R, Robert B, van Amerongen H (1999) Spectroscopic characterization of the spinach Lhb4 protein (CP29), a minor light-harvesting complex of photosystem II. Eur J Biochem 262:817–823CrossRefGoogle Scholar
  20. 20.
    Butnariu M (2012) An analysis of Sorghum halepense’s behavior in presence of tropane alkaloids from Datura stramonium extracts. Chem Cent J 6:75CrossRefGoogle Scholar
  21. 21.
    Torres-Morán MI, Escoto-Delgadillo M, Ron-Parra J, Parra-Tovar G, Mena-Munguía S, Rodríguez-García A, Castellanos-Hernández YO (2011) Relationships among twelve genotypes of roselle (Hibiscus sabdariffa L.) cultivated in western Mexico. Ind Crops Prod 34:1079–1083CrossRefGoogle Scholar
  22. 22.
    Cheng Z, Lu BR, Baldwin BS, Sameshima K, Chen JK (2002) Comparative studies of genetic diversity in kenaf (Hibiscus cannabinus L.) varieties based on analysis of agronomic and RAPD data. Hereditas 136:231–239CrossRefGoogle Scholar
  23. 23.
    Chen S, Huang T, Ho C, Tsai P (1998) Extraction, analysis, and study on the volatiles in roselle tea. J Agric Food Chem 46(3):1101–1105CrossRefGoogle Scholar
  24. 24.
    Hidalgo-Villatoro SG, Cifuentes-Reyes WAL, Ruano-Solís HH, Cano-Castillo LE (2009) Caracterización de trece genotipos de rosa de jamaica Hibiscus sabdariffa en Guatemala. Agron Mesoamericana 20:101–109, ISSN-1659-1321Google Scholar
  25. 25.
    Gonzalez-Palomares S, Estarrón-Espinosa M, Gómez-Leyva JF, Andrade-González I (2009) Effect of the temperature on the spray drying of roselle extracts (Hibiscus sabdariffa L.). Plant Foods Hum Nutr 64:62–67CrossRefGoogle Scholar
  26. 26.
    Du X, Finn CE, Qian MC (2010) Volatile composition and odour-activity value of thornless ‘Black diamond’ and ‘Marion’ blackberries. Food Chem 119(3):1127–1134CrossRefGoogle Scholar
  27. 27.
    Ragazzo-Sanchez JA, Chalier P, Chevalier D, Calderon-Santoyo M, Ghommidh C (2008) Identification of different alcoholic beverages by electronic nose coupled to GC. Sens Actuator B Chem 134:43–48CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • G. A. Camelo-Méndez
    • 1
  • J. A. Ragazzo-Sánchez
    • 2
  • A. R. Jiménez-Aparicio
    • 1
  • P. E. Vanegas-Espinoza
    • 1
  • O. Paredes-López
    • 3
  • A. A. Del Villar-Martínez
    • 1
  1. 1.Instituto Politécnico Nacional, CEPROBIYautepecMéxico
  2. 2.Laboratorio Integral de Investigación en AlimentosInstituto Tecnológico de TepicTepicMéxico
  3. 3.Centro de Investigación y de Estudios Avanzados del IPNUnidad IrapuatoIrapuatoMéxico

Personalised recommendations