Advertisement

Plant Foods for Human Nutrition

, Volume 68, Issue 2, pp 137–144 | Cite as

Effect of High Hydrostatic Pressure on the Physiology of Manila Mango

  • M. A. Vargas-Ortiz
  • J. De la Cruz-Medina
  • J. J. Espinosa de los Monteros
  • R. M. Oliart-Ros
  • A. Rebolledo-Martinez
  • J. A. Ramírez
  • H. S. García
Original Paper

Abstract

Manila mangoes (Mangifera indica L.) have sensory characteristics that make them attractive for consumption as a fresh fruit. A large portion of the annual yield of this fruit is infested by the Mexican fruit fly (Anastrepha ludens), adversely impacting the quality of the crop. Hence, it is necessary to develop economically viable postharvest treatments to reduce the damage caused by this insect. Currently, high hydrostatic pressures are used to guarantee the safety of many processed foods. The objective of this work was to assess the effects of high hydrostatic pressure on mangoes at their physiological maturity. High hydrostatic pressures were applied to mangoes at three levels: 50, 100 and 200 megapascals applied for four different time periods (0, 5, 10 and 20 min). Physiologically mature mangoes were more resistant to changes in response to the pressure of 50 MPa. Reduction of physiological activity by application of high hydrostatic pressure opens a new avenue for the research on treatments intended to enhance preservation of whole fresh fruit.

Keywords

Hydrostatic pressure Manila mango Physiology 

Abbreviations

ACC

1-aminocyclopropane-1-carboxylate oxidase

Hue degree angle values

HP

Hydrostatic pressure

INIFAP

Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias

MPa

Megapascals

min

Minutes

TV

Control group

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of PROMEP (Mexico) through a network grant for utilization of agricultural resources.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cheftel JC (1995) High pressure, microbial inactivation and food preservation. Food Sci Technol Int 1:75–90. doi: 10.1177/108201329500100203 CrossRefGoogle Scholar
  2. 2.
    Hoover DG (1997) Minimally processed fruits and vegetables: reducing microbial load by nonthermal physical treatments. Food Technol 51:66–71, WOS: A1997XD90700024Google Scholar
  3. 3.
    Castañon-Rodríguez JF, Vargas-Ortiz MA et al (2011) Resistance of Mexican fruit fly to quarantine treatments of high-pressure processing combined with cold. Foodborne Pathog Dis 8:815–823. doi: 10.1089/fpd.2010.0811 CrossRefGoogle Scholar
  4. 4.
    Reyes J, Santiago G, Hernández P (2000) Mexican fruit fly eradication programme. In: Tan KH (ed) Area-wide control of fruit flies and other insect pests. Penerbit Universiti Sains Malaysia, Pulau Pinang, pp 377–380. ISBN 983-861-195-6Google Scholar
  5. 5.
    Lagunes L, Tovar B et al (2007) Effect of exogenous ethylene on ACC content and ACC oxidase activity during ripening of Manila mangoes subjected to hot water treatment. Plant Foods Hum Nutr 62:157–163. doi: 10.1007/s11130-007-0057-5 CrossRefGoogle Scholar
  6. 6.
    Saltveit ME, Yang SF (1987) Ethylene. In: Rivier L, Crozier A (eds) Principles and practices of plant hormone analysis, vol 2, Chapter 6. Academic Press, New York, pp 367–401. ISBN 0-12-198375-7Google Scholar
  7. 7.
    Harker FR, Maindonald JH, Jackson PJ (1996) Penetrometer measurement of apple and kiwifruit firmness: operator and instrument differences. J Am Soc Hort Sci 121:927–936, WOS:A1996VF06300028Google Scholar
  8. 8.
    AOAC (1990) In: Kenneth H (ed) Official methods of analysis, vol II, 15th edn. The Association of Official Analytical Chemists, Arlington. ISBN 0-935584-42-0Google Scholar
  9. 9.
    Ketsa S, Phakawatmongkol W, Subhadrabhandhu S (1999) Peel enzymatic activity and colour changes in ripening mango fruit. J Plant Physiol 154:363–366. doi:  10.1016/S0176-1617(99)80181-3. ISSN: 0176-1617Google Scholar
  10. 10.
    Shimada S, Andou M et al (1993) Effects of hydrostatic pressure on the ultrastructure and leakage of internal substances in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 40:123–131. doi: 10.1007/BF00170440 CrossRefGoogle Scholar
  11. 11.
    Oey I, Lille M et al (2008) Effect of high-pressure processing on colour, texture and flavour of fruit and vegetable based food products: a review. Trends Food Sci Technol 19:320–328. doi: 10.1016/j.tifs.2008.04.001Document CrossRefGoogle Scholar
  12. 12.
    Koca N, Karadeniz F, Burdurlu HS (2007) Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chem 100:609–615. doi: 10.1016/j.foodchem.2005.09.079 CrossRefGoogle Scholar
  13. 13.
    Minguez MMI, Garrido FJ, Gandul RB (1989) Pigment changes in olives during fermentation and brine storage. J Agric Food Chem 37:8–11. doi: 10.1021/jf00085a002 CrossRefGoogle Scholar
  14. 14.
    Schwartz SJ, Lorenzo TV (1991) Chlorophyll stability during continuous aseptic processing and storage. J Food Sci 56:1059–1062. doi: 10.1111/j.1365-2621.1991.tb14641.x CrossRefGoogle Scholar
  15. 15.
    Molina-Gutierrez A, Stippl V et al (2002) In situ determination of the intracellular pH of Lactococcus lactis and Lactobacillus plantarum during pressure treatment. Appl Environ Microbiol 68:4399–4406. doi: 10.1128/AEM.68.9.4399-4406.2002 CrossRefGoogle Scholar
  16. 16.
    Salisbury BF, Ross CW (1992) Plant physiology, 4th edn. Wadsworth, Belmont. ISBN 0534151620Google Scholar
  17. 17.
    Ruiz M, Guadarrama A (1992) Comportamiento postcosecha del mango (Mangifera indica) tipo Bocado durante maduración controlada. Rev Fac Agron 18:79–93Google Scholar
  18. 18.
    Nip WK (1993) Determining the internal quality of mango fruit. In: Chia CL, Evans DO (eds) Proceedings, Conference on Mango in Hawaii. March 9–11, 1993; Honolulu, Hawaii. Honolulu (HI): University of Hawaii. pp. 41–47. (http://scholarspace.manoa.hawaii.edu/bitstream/handle/10125/16476/HITAHR_04-06-93.pdf?sequence=1)
  19. 19.
    Osuna JA, Guzmán ML et al. (2002) Calidad del mango Ataulfo producido en Nayarit. Rev Fitotec Mex 254:367–374. ISSN: 0187–7380Google Scholar
  20. 20.
    Ikeda F, Baba T et al (2000) Effect of hydrostatic pressure on postharvest physiology in fruit. Acta Hort 518:101–106Google Scholar
  21. 21.
    Álvarez-Virrueta DR, García-López EG et al (2012) Effect of high hydrostatic pressure on post-harvest physiology of the “Ataulfo” mango. CyTA J Food 10:173–181. doi: 10.1080/19476337.2011.603843 CrossRefGoogle Scholar
  22. 22.
    Boyton BB, Sims CA et al (2002) Quality and stability of precut mangoes and carambolas subjected to high pressure processing. J Food Sci 67:409–415. doi: 10.1111/j.1365-2621.2002.tb11419.x CrossRefGoogle Scholar
  23. 23.
    Basak S, Ramashamy H (1998) Effect of high pressure processing on the texture of selected fruits and vegetables. J Texture Stud 29:587–601. doi: 10.1111/j.1745-4603.1998.tb00185.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. A. Vargas-Ortiz
    • 1
  • J. De la Cruz-Medina
    • 1
  • J. J. Espinosa de los Monteros
    • 1
  • R. M. Oliart-Ros
    • 1
  • A. Rebolledo-Martinez
    • 2
  • J. A. Ramírez
    • 3
  • H. S. García
    • 1
  1. 1.Unidad de Investigación y Desarrollo de AlimentosInstituto Tecnológico de VeracruzVeracruzMéxico
  2. 2.Campo Experimental CotaxtlaINIFAPVeracruz-CordobaMéxico
  3. 3.Centro de Excelencia. Dirección General de Innovación Tecnológica, Universidad Autónoma de TamaulipasCentro Universitario Cd.VictoriaMéxico

Personalised recommendations