Plant Foods for Human Nutrition

, Volume 67, Issue 3, pp 247–255 | Cite as

Solubilization, Fractionation, and Electrophoretic Characterization of Inca Peanut (Plukenetia volubilis L.) Proteins

  • Shridhar K. Sathe
  • Harshal H. Kshirsagar
  • Girdhari M. Sharma
Original Paper


Effects of different solvents, ionic strength, and pH on Inca peanut seed protein solubility were assessed by quantitatively analyzing solubilized proteins using Lowry and Bradford methods. Soluble proteins were fractionated using Osborne procedure and the polypeptide composition of solubilized proteins was determined by one dimensional 25 % monomer acrylamide linear gradient SDS-PAGE. Osborne protein fractions were analyzed by the 2D gel electrophoresis. Total seed proteins were efficiently solubilized by 2 M NaCl among the tested solvents. The soluble seed proteins registered a minimum solubility at pH ~4.0. Osborne protein fractions, albumins, globulins, prolamins, and glutelins accounted for 43.7, 27.3, 3.0, and 31.9 %, respectively, of the total aqueous soluble proteins. Soluble seed flour proteins are mainly composed of polypeptides in the MW range of 6–70 kDa of which the predominant polypeptides were in the 20–40 kDa range. Prolamin fraction was mainly composed of four polypeptides (MW < 15 kDa). Glycoprotein staining indicated 32–35 and <14 kDa peptides to be positive.


Inca peanut Protein Solubility Protein fractions Electrophoresis 





Coomassie brilliant blue R








Isoelectric focusing




Least significant difference




Molecular weight


Polyacrylamide gel electrophoresis


Isoelectric pH


Room temperature


Sodium dodecyl sulfate




  1. 1.
    FAO Statistical Yearbook (2010) Food and Agricultural Organization, FAOSTAT, Table D.2. Accessed January 14, 2012Google Scholar
  2. 2.
    Derbyshire E, Wright DJ, Boulter D (1976) Review: Legumin and vicilin, storage proteins of legume seeds. Phytochem 15:3–24CrossRefGoogle Scholar
  3. 3.
    Duranti M, Gius C (1997) Legume seeds: Protein content and nutritional value. Field Crops Res 53:31–45CrossRefGoogle Scholar
  4. 4.
    Deshpande SS (1992) Food legumes in human nutrition- a personal perspective. CRC Crit Rev Food Sci Nutr 32:333–363CrossRefGoogle Scholar
  5. 5.
    Sathe SK (2002) Dry bean protein functionality. CRC Crit Rev Biotechnol 22:175–223CrossRefGoogle Scholar
  6. 6.
    Sathe SK, Deshpande SS, Salunkhe DK (1984) Dry beans of phaseolus: a review. Part I. Proteins. CRC Crit Rev Food Sci Nutr 20:1–46Google Scholar
  7. 7.
    Sathe SK, Deshpande SS, Salunkhe DK (1984) Dry beans of Phaseolus: A review. Part II. Chemical composition. CRC Crit Rev Food Sci Nutr 21:41–93Google Scholar
  8. 8.
    Ekanayake S, Jansz ER, Nair BM (2000) Literature review of an underutilized legume: canavalia gladiata L. Plant Foods Hum Nutr 55:305–321CrossRefGoogle Scholar
  9. 9.
    Schwenke KD (2001) Reflections about the functional potential of legume proteins. A review. Nahrung 45:377–381CrossRefGoogle Scholar
  10. 10.
    Pugalenthi M, Vadivel V, Siddhuraju P (2005) Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. Utilis- A review. Plant Foods Hum Nutr 60:201–218CrossRefGoogle Scholar
  11. 11.
    Phillips RD, McWatters KH, Chinnan MS, Hung Y-C, Beuchat LR, Sakyi-Dawson E, Ngoddy P, Nnanyelugo D, Enwere J, Komey NS, Liu K, Mensa-Wilmot Y, Nnanna IA, Okeke C, Prinyawiwatkul W, Saalia FK (2003) Utilization of cowpeas for human food. Field Crops Res 82:193–213CrossRefGoogle Scholar
  12. 12.
    Montoya CA, Lallès J-P, Beebe S, Leterme P (2010) A review: phaseolin diversity as a possible strategy to improve the nutritional value of common beans (Phaseolin vulgaris). Food Res Int 43:443–449CrossRefGoogle Scholar
  13. 13.
    Sprent JI, Odee DW, Dakora FD (2010) African legumes: A vital but under-utilized resource. J Exp Bot 61:1257–1265CrossRefGoogle Scholar
  14. 14.
    National Academy of Sciences (NAS) (1979) Tropical legumes: sources for the future. Washington, D. C., pp. 332Google Scholar
  15. 15.
    Bussmann RW, Téllez C, Glenn A (2009) Plukenetia huayllabambana sp. Nov. (Euphorbiaceae) from the upper Amazon of Peru. Nord J Bot 27:313–315CrossRefGoogle Scholar
  16. 16.
    Gillespie LJ (2007) A revision of paleotropical Plukenetia (Euphorbiaceae) including two new species from Madagascar. Syst Bot 32:780–802CrossRefGoogle Scholar
  17. 17.
    Martínez-Romero MM, Castro-Ramírez AE, Fernández JC (2004) Use and availability of craft vines in the influence zone of the biosphere reserve Sian Ka’an, Quintana Roo. Mex Econ Bot 58:83–97CrossRefGoogle Scholar
  18. 18.
    Guillèn MD, Ruiz A, Cabo N, Chirinos R, Pascual G (2003) Characterization of Sacha inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR. Comparison with linseed oil. J Am Oil Chem Soc 80:755–762CrossRefGoogle Scholar
  19. 19.
    Hamaker BR, Valles C, Gilman R, Hardmeier RM, Clark D, Garcia HH, Gonzales AE, Kohlstad I, Castro M, Valdivia R, Rodriguez T, Lescano M (1992) Amino acid and fatty acid profiles of the Inca peanut (Plukenetia volubilis). Cereal Chem 69:461–463Google Scholar
  20. 20.
    do Prado IM, Guifrida WM, Alvarez VH, Cabral VF, Quispe-Condori S, Saldaña MDA, Cardozo-Filho L (2011) Phase equilibrium measurements of Sacha inchi oil (Plukenetia volubilis) and CO2 at high pressures. J Am Oil Chem Soc 88:1263–1269CrossRefGoogle Scholar
  21. 21.
    Sathe SK, Hamaker BR, Sze-Tao KWC, Venkatachalam M (2002) Isolation, purification, and biochemical characterization of a novel water soluble protein from Inca peanut (Plukenetia volubilis L.). J Agric Food Chem 50:4906–4908CrossRefGoogle Scholar
  22. 22.
    Friedman M (1996) Nutritional value of proteins from different food sources. A review. J Agric Food Chem 44:6–29CrossRefGoogle Scholar
  23. 23.
    Sathe SK, Venkatachalam M, Sharma GM, Kshirsagar HH, Teuber SS, Roux KH (2009) Solubilization and electrophoretic characterization of select edible nut seed proteins. J Agric Food Chem 57:7846–7856CrossRefGoogle Scholar
  24. 24.
    Osborne TB (1924) The vegetable proteins, 2nd edn. Longmans, Green and Co., London, p 154Google Scholar
  25. 25.
    Fling SP, Gregerson DS (1986) Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without urea. Anal Biochem 155:83–88CrossRefGoogle Scholar
  26. 26.
    Sharma GM, Irsigler A, Dhanarajan P, Ayuso R, Bardina L, Sampson HA, Roux KH, Sathe SK (2011) Cloning and characterization of 2S albumin, Car i 1, a major allergen in pecan. J Agric Food Chem 59:4130–4139CrossRefGoogle Scholar
  27. 27.
    Official Methods of Analysis 16th ed (1995) Association of Official Analytical Chemists (AOAC): Arlington, VAGoogle Scholar
  28. 28.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  29. 29.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  30. 30.
    Deshpande SS, Cheryan M, Salunkhe DK (1986) Tannin analysis of food products. CRC Crit Rev Food Sci Nutr 24:401–449Google Scholar
  31. 31.
    Ott L (1977) An introductuion to statistical methods and data analysis. Duxbury Press (a division of Wadsworth Publishing Co.), BelmontGoogle Scholar
  32. 32.
    Crowe TW, Johnson LA, Wang T (2001) Characterization of extruded-expelled soybean flours. J Am Oil Chem Soc 78:775–779CrossRefGoogle Scholar
  33. 33.
    Adsule RN, Kadam SS, Salunkhe DK (1989) Peanut. In: Salunkhe DK, Kadam SS (eds) Handbook of world food legumes: nutritional chemistry, processing technology, and utilization, Vol. II, pp. 193–214Google Scholar
  34. 34.
    Tokusoglu O, Unal MK, Alakir I (2004) Proximate chemical composition, amino acid and fatty acid properties of sesame seed flours. J Food Sci Technol (Mysore, India) 41:409–412Google Scholar
  35. 35.
    Güèmes-Vera N, Peña-Bautista RJ, Jiménez-Martínez C, Dávila-Ortiz G, Calderón Dominguez G (2008) Effective detoxification and decoloration of Lupinus mutabilis seed derivatives, and effect of thoese derivatives on bread quality and acceptance. J Sci Food Agric 88:1135–1143CrossRefGoogle Scholar
  36. 36.
    Kadam SS, Chougule BA, Salunkhe DK (1989) Lupine. In Handbook of World Food Legumes: Nutritional Chemistry, Processing Technology, and Utilization, Salunkhe DK and Kadam SS (eds.), Vol. II, 163–175Google Scholar
  37. 37.
    Cabra V, Arreguin R, Vazques-Duhalt R, Farres A (2007) Effect of alkaline deamidation on the structure, surface hydrophobicity, and emulsifying properties of the Z19 α-zein. J Agric Food Chem 55:435–445CrossRefGoogle Scholar
  38. 38.
    Zhao J, Tian Z, Chen L (2011) Effects of deamidation on aggregation and emulsifying properties of barley glutelin. Food Chem 128:1029–1036CrossRefGoogle Scholar
  39. 39.
    Sathe SK, Salunkhe DK (1981) Solubilization and electrophoretic characterization of the Great Northern bean (Phaseolus vulgaris L.) proteins. J Food Sci 46:82–87CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • Shridhar K. Sathe
    • 1
  • Harshal H. Kshirsagar
    • 1
    • 2
  • Girdhari M. Sharma
    • 1
    • 3
  1. 1.Department of Nutrition, Food & Exercise Sciences, College of Human SciencesThe Florida State UniversityTallahasseeUSA
  2. 2.Roquette America Inc.GenevaUSA
  3. 3.Department of Health and Human Services, Public Health Service, Food and Drug Administration, Office of Applied Research and Safety AssessmentCenter for Food Safety and Applied Nutrition, U.S. FDALaurelUSA

Personalised recommendations