Plant Foods for Human Nutrition

, Volume 67, Issue 1, pp 94–99 | Cite as

Chemopreventive Effects of Free and Bound Phenolics Associated to Steep Waters (Nejayote) Obtained After Nixtamalization of Different Maize Types

  • Carlos Rojas-García
  • Silverio García-Lara
  • Sergio O. Serna-Saldivar
  • Janet A. Gutiérrez-Uribe
Original Paper


Free and bound phenolics extracts from nejayote solids were obtained after optimally lime-cooking blue, normal white, red, normal yellow, high-carotenoid and quality protein maize types. The extraction yield ranged from 4.47 to 10.05%. Bound phenolics extracts had higher content of total phenolics, antioxidant activity and ferulic acid compared to the free phenolics extracts. In general, free phenolics extracts were less cytotoxic than the bound phenolics counterparts. Bound phenolics extracts had higher induction of quinone reductase (QR) and particularly the normal yellow nejayote exerted the highest chemopreventive index tested in Hepa1c1c7 cells. When tested for monofunctional phase 2 induction capacity in BPrc1 cells, the bound phenolics extracts of blue, normal white and quality protein nejayotes were better inducers than the normal yellow counterpart. Particularly, the free phenolics extract of the white maize nejayote induced BPrc1 cells QR and exerted a higher chemopreventive index compared to the bound phenolics extract. Therefore, the nejayote of the normal white maize was the best source of monofunctional phase 2 enzyme inducers.


Chemopreventive Wastewater (nejayote) Phenolics Ferulic acid Antioxidant Phase 2 enzymes Monofunctional Bifunctional 



blue maize


high-carotenoid maize


normal white maize


normal yellow maize


quality protein maize


red maize


quinone reductase


oxygen radical absorbance capacity


chemopreventive index


concentration for doubling enzymatic activity



This research was supported by the Research Chair Funds CAT-005 from Tecnológico de Monterrey-Campus Monterrey. The six contrasting types of maize were kindly donated by CIMMYT’s Global Maize Program (Batan Experimental Station, Mexico).


  1. 1.
    Salmeron-Alcocer A, Rodriguez-Mendoza N, Pineda-Santiago S, Cristiani-Urbina E, Juarez-Ramirez C, Ruiz-Ordaz N, Galindez-Mayer J (2003) Aerobic treatment of maize processing wastewater (nejayote) in a single stream multi stage reactor. J Environ Eng Sci 2(5):401–406CrossRefGoogle Scholar
  2. 2.
    Pflugfelder RL, Rooney LW, Waniska RD (1988) Dry matter losses in commercial corn masa production. Cereal Chem 65:127–132Google Scholar
  3. 3.
    Jackson DS, Rooney LW, Kunze OR, Waniska RD (1988) Alkaline processing properties of stress cracked and broken corn (Zea mays L). Cereal Chem 65:133–137Google Scholar
  4. 4.
    Sahai D, Surjewan I, Mua JP, Buendia MO, Rowe M, Jackson DS (2000) Dry matter loss during nixtamalization of a white corn hybrid: Impact of processing parameters. Cereal Chem 77:254–258CrossRefGoogle Scholar
  5. 5.
    Gutiérrez-Uribe JA, Rojas-García C, García-Lara S, Serna-Saldivar SO (2010) Phytochemical analysis of wastewater (nejayote) obtained after lime-cooking of different types of maize kernels processed into masa for tortillas. J Cereal Sci 52:410–416CrossRefGoogle Scholar
  6. 6.
    Sahai D, Mua JP, Surjewan I, Buendia MO, Rowe M, Jackson DS (2001) Alkaline processing (nixtamalization) of white Mexican corn hybrids for tortilla production: Significance of corn physicochemical characteristics and process conditions. Cereal Chem 78:116–120CrossRefGoogle Scholar
  7. 7.
    Martínez-Bustos F, Martínez-Flores H, Sanmartín-Martínez E, Sánchez-Sinencio F, Chang Y, Barrera-Arellano D, Rios E (2001) Effect of the components of maize on the quality of masa and tortillas during the traditional nixtamalization process. J Sci Food Agric 81:1455–1462CrossRefGoogle Scholar
  8. 8.
    Flores-Farías R, Martínez-Bustos F, Salinas-Moreno Y, Chang YK, Hernández JG, Ríos E (2000) Physicochemical and rheological characteristics of commercial nixtamalized Mexican maize flours for tortillas. J Sci Food Agric 80:657–664CrossRefGoogle Scholar
  9. 9.
    Lopez-Martinez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee C, Parkin KL, Garcia HS (2009) Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci & Technol 42:1187–1192CrossRefGoogle Scholar
  10. 10.
    Figueroa-González I, Quijano G, Ramírez G, Cruz-Guerrero A (2011) Probiotics and prebiotics—Perspectives and challenges. J Sci Food Agric 91:1341–1348CrossRefGoogle Scholar
  11. 11.
    Adom KK, Liu RH (2002) Antioxidant activity of grains. J Agric Food Chem 50:6182–6187CrossRefGoogle Scholar
  12. 12.
    Del Pozo-Insfran D, Brenes CH, Serna-Saldivar SO, Talcott ST (2006) Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res Int 39(6):696–703CrossRefGoogle Scholar
  13. 13.
    Lee CH, Garcia HS, Parkin KL (2010) Bioactivities of kernel extracts of 18 strains of maize (Zea mays). J Food Sci 75(8):C667–C672CrossRefGoogle Scholar
  14. 14.
    Prochaska HJ, Talalay P (1988) Regulatory mechanism of monofunctional and bifuctional anticarcinogenic enzyme inducers in murine liver. Cancer Res 48:4776–4782Google Scholar
  15. 15.
    Lopez-Martinez LX, Parkin KL, García HS (2011) Phase II-inducing, polyphenols content and antioxidant capacity of corn (Zea mays L.) from phenotypes of white, blue, red and purple colors processed into masa and tortillas. Plant Foods Hum Nutr 66:41–47CrossRefGoogle Scholar
  16. 16.
    Cortés GA, Salinas MY, San Martín-Martinez E, Martinez-Bustos F (2006) Stability of anthocyanins of blue maize (Zea mays L.) after nixtamalization of separated pericarp-germ tip cap and endosperm fractions. J Cereal Sci 43:57–62CrossRefGoogle Scholar
  17. 17.
    Serna-Saldivar SO, Gomez MH, Almeida-Dominguez HD, Islas-Rubio A, Rooney LW (1993) A method to evaluate the lime cooking properties of corn (Zea mays). Cereal Chem 70:762–764Google Scholar
  18. 18.
    Abdel-Aal ESM, Hucl P (1999) A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem 76:350–354CrossRefGoogle Scholar
  19. 19.
    Mora-Rochin S, Gutiérrez-Uribe JA, Serna-Saldivar SO, Sánchez-Peña P, Reyes-Moreno C, Milán-Carrillo J (2010) Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. J Cereal Sci 52:410–416CrossRefGoogle Scholar
  20. 20.
    Sen A, Bergvinson D, Miller SS, Atkinson J, Fulcher RG, Arnason JT (1994) Distribution and microchemical detection of phenolic acids, flavonoids, and phenolic acid amides in maize kernels. J Agric Food Chem 42:1879–1883CrossRefGoogle Scholar
  21. 21.
    García-Lara S, Bergvinson DJ, Burt AJ, Ramputh AI, Díaz-Pontones DM, Arnason JT (2004) The role of pericarp cell wall components in maize weevil resistance. Crop Sci 44:1546–1552CrossRefGoogle Scholar
  22. 22.
    Serna Saldivar SO (2010) Cereal grains: properties, processing and nutritional attributes. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • Carlos Rojas-García
    • 1
  • Silverio García-Lara
    • 1
  • Sergio O. Serna-Saldivar
    • 1
  • Janet A. Gutiérrez-Uribe
    • 1
  1. 1.Department of Biotechnology and Food EngineeringTEC de Monterrey, ITESM-Campus MonterreyMonterreyMexico

Personalised recommendations