Advertisement

Plant Foods for Human Nutrition

, Volume 64, Issue 2, pp 160–166 | Cite as

Phenolics, Sugars, Antimicrobial and Free-Radical-Scavenging Activities of Melicoccus bijugatus Jacq. Fruits from the Dominican Republic and Florida

  • Laura M. Bystrom
  • Betty A. Lewis
  • Dan L. Brown
  • Eloy Rodriguez
  • Ralph L. Obendorf
Original Paper

Abstract

Edible fruits of the native South American tree Melicoccus bijugatus Jacq. are consumed fresh or in traditional food, drink and medicinal preparations. Some therapeutic effects of these fruits may be due to phenolics and sugars. Aqueous acetone, methanol or ethanol tissue extracts of different cultivars or collections of M. bijugatus fruits from the Dominican Republic and Florida were analyzed for total phenolics and free radical scavenging activity by UV-vis spectroscopy, sugars by gas chromatography, and antimicrobial activity by the disc diffusion assay. Total phenolics and free radical scavenging activities ranked: seed coat > embryo > pulp extracts. Montgomery cultivar fruits had the highest total phenolics. For sugars: pulp > embryo and highest in Punta Cana fruit pulp. In all extracts: sucrose > glucose and fructose. Glucose:fructose ratios were 1:1 (pulp) and 0.2:1 (embryo). Pulp extracts had dose-response antibacterial activity and pulp and embryo extracts had antifungal activity against one yeast species. Phenolics and sugars were confirmed with thin-layer chromatography and nuclear magnetic resonance. Sugar-free pulp fractions containing phenolics had slightly more antimicrobial activity than H2O-soluble pulp fractions with sugars. Results indicate M. bijugatus fruits contain phenolics, sugars and other H2O-soluble compounds consistent with therapeutic uses.

Keywords

Antimicrobial activity Antioxidant activity Fruits Melicoccus bijugatus Jacq. Sugars Total phenolics 

Notes

Acknowledgment

Supported in part by the National Institute of Diabetes and Digestive and Kidney Diseases, NIH Grant no. 5 T32 DK007158-31, this work was part of a PhD thesis, Cornell University (Bystrom, 2007). We thank Wendy Meyer for fruit collections and Maria Laux for microorganisms. A preliminary report was presented at Experimental Biology Conference 2006 in San Francisco.

Supplementary material

11130_2009_119_MOESM1_ESM.doc (12 kb)
Table 1S Glucose/fructose ratios of fruit tissue extractsa (DOC 11 kb)
11130_2009_119_MOESM2_ESM.doc (13 kb)
Table 2S Dose response of antimicrobial activity (diameter of inhibition in mm) of 70% acetone extracts of Newcomb and Montgomery pulpa (DOC 13 kb)
11130_2009_119_MOESM3_ESM.doc (12 kb)
Table 3S TLC spot test for phenolics and free radical scavengers in semi-purified fractions from Punta Cana (P) or Newcomb (N) pulp and Punta Cana embryo (PE) crude extractsa (DOC 12 kb)
11130_2009_119_MOESM4_ESM.doc (13 kb)
Table 4S Thin-layer chromatography of Punta Cana or Newcomb pulp and Punta Cana embryo extract fractions after visualization with vanillin-sulphuric acid or UV lighta (DOC 12 kb)

References

  1. 1.
    Acevedo-Rodríguez P (2003) Meliococceae (Sapindaceae): Melicoccus and Talisia. Organization for Flora Neotropica by the New York Botanical Garden. Bronx, NYGoogle Scholar
  2. 2.
    Morton JF, Dowling CF (1987) Mamoncillo. In: Morton JF (ed) Fruits of warm climates. Creative Resource Systems, Miami, FL, pp 267–269Google Scholar
  3. 3.
    Beyra A, León MC, Iglesias E, Ferrándiz D, Herrera R, Volpato G, Godínez D, Guimarais M, Álvarez R (2004) Estudios etnobotánicos sobre plantas medicinales en la provincial de Camagüey (Cuba). An Jardin Botanico Madr 1979(61):185–204Google Scholar
  4. 4.
    Barbeau G (1990) Frutas tropicales en Nicaragua. 1st edn. Dirección General de Técnicas Agropecuarias, Ministerio de Desarrollo Agropecuario y Reforma Agraria MIDINRA: Editorial Ciencias Sociales, Managua, NicaraguaGoogle Scholar
  5. 5.
    Liogier AH (1990) Melicoccus bijugatus. In: Liogier AH (ed) Plantas medicinales de Puerto Rico y del Caribe, 1st edn. Iberoamericana de Ediciones, San Juan, PR, p 214Google Scholar
  6. 6.
    Kubota N (1995) Phenolic content and phenolic composition of peach fruit. In: Linskins HF, Jackson JF (eds) Fruit analysism, vol 18. Berlin; New York, Springer, pp 82–95Google Scholar
  7. 7.
    Bystrom LM, Lewis BA, Brown DL, Rodriguez E, Obendorf RL (2008) Characterisation of phenolics by LC-UV/Vis, LC-MS/MS and sugars by GC in Melicoccus bijugatus Jacq. ‘Montgomery’ fruits. Food Chem 111:1017–1024. doi: 10.1016/j.foodchem.2008.04.058 CrossRefGoogle Scholar
  8. 8.
    Goldstein R, Braverman D, Stankiewicz H (2000) Carbohydrate malabsorption and the effect of dietary restriction on symptoms of irritable bowel syndrome and functional bowel complaints. Isr Med Assoc J 2:583–587Google Scholar
  9. 9.
    Hyams JS, Etienne NL, Leichtner AM, Theuer RC (1988) Carbohydrate malabsorption following fruit juice ingestion in young children. Pediatrics 82:64–68Google Scholar
  10. 10.
    Luceri C, Giannini L, Lodovici M, Antonucci E, Abbate R, Masini E, Dolara P (2007) p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo. Br J Nutr 97:458–463. doi: 10.1017/S0007114507657882 CrossRefGoogle Scholar
  11. 11.
    Schuier M, Sies H, Illek B, Fischer H (2005) Cocoa-related flavonoids inhibit CFTR-mediated chloride transport across T84 human colon epithelia. J Nutr 135:2320–2325Google Scholar
  12. 12.
    Emmons CL, Peterson DM, Paul GL (1999) Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J Agric Food Chem 47:4894–4898. doi: 10.1021/jf990530i CrossRefGoogle Scholar
  13. 13.
    Son S, Lewis BA (2002) Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure-activity relationship. J Agric Food Chem 50:468–472. doi: 10.1021/jf010830b CrossRefGoogle Scholar
  14. 14.
    Horbowicz M, Obendorf RL (1994) Seed desiccation tolerance and storability: dependence on flatulence-producing oligosaccharides and cyclitols—review and survey. Seed Sci Res 4:385–405. doi: 10.1017/S0960258500002440 CrossRefGoogle Scholar
  15. 15.
    Taylor RS, Manandhar NP, Towers GH (1995) Screening of selected medicinal plants of Nepal for antimicrobial activities. J Ethnopharmacol 46:153–159. doi: 10.1016/0378-8741(95)01242-6 CrossRefGoogle Scholar
  16. 16.
    Einbond LS, Reynertson KA, Luo X, Basile MJ, Kennelly EJ (2004) Anthocyanin antioxidants from edible fruits. Food Chem 84:23–28. doi: 10.1016/S0308-8146(03)00162-6 CrossRefGoogle Scholar
  17. 17.
    Sobolev AP, Brosio E, Gianferri R, Segre AL (2005) Metabolic profile of lettuce leaves by high-field NMR spectra. Magn Reson Chem 43:625–638. doi: 10.1002/mrc.1618 CrossRefGoogle Scholar
  18. 18.
    McMurry J (1992) Organic chemistry, 3rd edn. Brooks/Cole Pub, Pacific Grove, CAGoogle Scholar
  19. 19.
    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure antioxidant activity relationship of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956. doi: 10.1016/0891-5849(95)02227-9 CrossRefGoogle Scholar
  20. 20.
    Spranger IB, Sun B, Mateus AM, de Freitas V, Ricardo-da-Silva JM (2008) Chemical characterization and antioxidant activities of oligomeric and polymeric procyanidin fractions from grape seeds. Food Chem 108:519–532. doi: 10.1016/j.foodchem.2007.11.004 CrossRefGoogle Scholar
  21. 21.
    Hamaishi K, Kojima R, Ito M (2006) Anti-ulcer effect of tea catechins in rats. Bio Pharm Bull 29:2206–2213. doi: 10.1248/bpb.29.2206 CrossRefGoogle Scholar
  22. 22.
    Freeman CE, Worthington RD (1989) Is there a difference in the sugar composition of cultivated sweet fruits of tropical/subtropical and temperate origins. Biotropica 21:219–222. doi: 10.2307/2388647 CrossRefGoogle Scholar
  23. 23.
    Chirife J, Herszage L, Joseph A, Kohn ES (1983) In vitro study of bacterial growth inhibition in concentrated sugar solutions: microbiological basis for the use of sugar in treating infected wounds. Antimicrob Agents Chemother 23:766–773Google Scholar
  24. 24.
    Herald PJ, Davidson PM (1983) Antibacterial activity of selected hydroxycinnamic acids. J Food Sci 48:1378–1379. doi: 10.1111/j.1365-2621.1983.tb09243.x CrossRefGoogle Scholar
  25. 25.
    Sierra-Gómez MP (2006) Physical-chemical analysis of selected quenepa (Melicoccus bijugatus Jacq.) varieties. University of Puerto Rico, Mayagüez, PR, Master’s thesisGoogle Scholar
  26. 26.
    Georgopoulou M, Kontakiotis E, Nakou M (1994) Evaluation of the antimicrobial effectiveness of citric acid and sodium hypochlorite on the anaerobic flora of the infected root canal. Int Endod J 27:139–143. doi: 10.1111/j.1365-2591.1994.tb00243.x CrossRefGoogle Scholar
  27. 27.
    Mandal P, Sinha Babu SP, Mandal NC (2005) Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia 76:462–465. doi: 10.1016/j.fitote.2005.03.004 CrossRefGoogle Scholar
  28. 28.
    Okore VC, Ugwu CM, Oleghe PO, Akpa PA (2007) Selective anti-candidal action of crude aqueous pod extract of Lecaniodiscus cupanioides: a preliminary study of Canidida albicans obtained from an AIDS patient. Sci Res Essay 2:43–46Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Laura M. Bystrom
    • 1
  • Betty A. Lewis
    • 1
  • Dan L. Brown
    • 2
  • Eloy Rodriguez
    • 2
  • Ralph L. Obendorf
    • 2
  1. 1.Division of Nutritional SciencesCornell UniversityIthacaUSA
  2. 2.Departments of Animal Science, Plant Biology, and Crop and Soil SciencesCornell UniversityIthacaUSA

Personalised recommendations