Quantifying environmental memory degree from the aspect of environmental sensitivity

Abstract

An intuitive and natural way to quantify memory effects through measures on a probe quantum system is given from the aspect of sensitivity of environmental state. After several measures on the probe system, the degree of memory effects is given by the maximum distinguishability of output states of probe system corresponding to the variation of past evolution time. Quantum Fisher information on the past evolution duration which reflects the sensitivity of environmental state with respect to the system–environment evolution duration becomes the characteristic parameter of memory degree. The estimation process is applied on both classical and quantum environments, and the memory degree from the aspect of sensitivity of environmental state reflects the memory speed of environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    Google Scholar 

  2. 2.

    Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Rivas, A., Huelga, S.F., Plenio, M.B.: Entanglement and non-markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Hou, S.C., Yi, X.X., Yu, S.X., Oh, C.H.: Alternative non-markovianity measure by divisibility of dynamical maps. Phys. Rev. A 83, 062115 (2011)

    ADS  Article  Google Scholar 

  5. 5.

    Lu, X.-M., Wang, X., Sun, C.P.: Quantum fisher information flow and non-markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    ADS  Article  Google Scholar 

  6. 6.

    Mazzola, L., Rodríguez-Rosario, C.A., Modi, K., Pater-nostro, M.: Dynamical role of system-environment correlations in non-Markovian dynamics. Phys. Rev. A 86, 010102 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    Rodríguez-Rosario, C.A., Modi, K., Mazzola, L., Aspuru-Guzik, A.: Unification of witnessing initial system-environment correlations and witnessing non-Markovianity. Europhys. Lett. 99, 20010 (2012)

    ADS  Article  Google Scholar 

  8. 8.

    Rodríguez-Rosario, C.A., Modi, K., Kuah, A.-M., Shaji, A., Sudarshan, E.: Completely positive maps and classical correlations. J. Phys. A 41, 205301 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Modi, K.: Operational approach to open dynamics and quantifying initial correlations. Sci. Rep. 2, 581 (2012)

    ADS  Article  Google Scholar 

  10. 10.

    Laine, E.-M., Piilo, J., Breuer, H.-P.: Witness for initial system-environment correlations in open-system dynamics. Europhys. Lett. 92, 60010 (2010)

    ADS  Article  Google Scholar 

  11. 11.

    Gessner, M., Breuer, H.-P.: Detecting nonclassical system-environment correlations by local operations. Phys. Rev. Lett. 107, 180402 (2011)

    ADS  Article  Google Scholar 

  12. 12.

    Gessner, M., Ramm, M., Pruttivarasin, T., Buchleitner, A., Breuer, H.-P., Haffner, H.: Local detection of quantum correlations with a single trapped ion. Nat. Phys. 10, 105 (2014)

    Article  Google Scholar 

  13. 13.

    Luo, S., Fu, S., Song, H.: Quantifying non-Markovianity via correlations. Phys. Rev. A 86, 044101 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    He, Z., Zeng, H.-S., Li, Y., Wang, Q., Yao, C.: Non-Markovianity measure based on the relative entropy of coherence in an extended space. Phys. Rev. A 96, 022106 (2017)

    ADS  Article  Google Scholar 

  15. 15.

    Fanchini, F.F., Karpat, G., Çakmak, B., Castelano, L.K., Aguilar, G.H., Farías, O.J., Walborn, S.P., Ribeiro, P.H.S., de Oliveira, M.C.: Non-markovianity through accessible information. Phys. Rev. Lett. 112, 210402 (2014)

    ADS  Article  Google Scholar 

  16. 16.

    Bylicka, B., Chruściński, D., Maniscalco, S.: Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci. Rep. 4, 5720 (2014)

    ADS  Article  Google Scholar 

  17. 17.

    Pineda, C., Gorin, T., Davalos, D., Wisniacki, D.A., García-Mata, I.: Measuring and using non-Markovianity. Phys. Rev. A 93, 022117 (2016)

    ADS  Article  Google Scholar 

  18. 18.

    Bylicka, B., Johansson, M., Acin, A.: Constructive method for detecting the information backflow of bijective non-completely-positive-divisible dynamics. arXiv: 1603.04288 (2016)

  19. 19.

    Usha Devi, A.R., Rajagopal, A.K., Sudha: Open-system quantum dynamics with correlated initial states, not completely positive maps, and non-Markovianity. Phys. Rev. A 83, 022109 (2011)

    ADS  Article  Google Scholar 

  20. 20.

    Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Usha Devi, A.R., Rajagopal, A.K., Shenoy, S., Rendell, R.W.: Interplay of quantum stochastic and dynamical maps to discern markovian and non-markovian transitions. J. Quant. Inf. Sci. 2, 47 (2012)

    Google Scholar 

  22. 22.

    Chruścińskiand, D., Maniscalco, S.: Degree of non-markovianity of quantum evolution. Phys. Rev. Lett. 112, 120404 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Operational markov condition for quantum processes. Phys. Rev. Lett. 120, 040405 (2018)

    ADS  Article  Google Scholar 

  24. 24.

    Pollock, F.A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Non-Markovian quantum processes: complete framework and efficient characterization. Phys. Rev. A 97, 012127 (2018)

    ADS  Article  Google Scholar 

  25. 25.

    Budini, A.A.: Quantum non-markovian processes break conditional past-future independence. Phys. Rev. Lett. 121, 240401 (2018)

    ADS  Article  Google Scholar 

  26. 26.

    Budini, A.A.: Conditional past-future correlation induced by non-Markovian dephasing reservoirs. Phys. Rev. A 99, 052125 (2019)

    ADS  Article  Google Scholar 

  27. 27.

    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    Google Scholar 

  28. 28.

    Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    Google Scholar 

  29. 29.

    Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Zurek, W.H.: Environment-induced superselection rules. Phys. Rev. D 26, 1862 (1982)

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Cucchietti, F.M., Paz, J.P., Zurek, W.H.: Decoherence from spin environments. Phys. Rev. A 72, 052113 (2005)

    ADS  Article  Google Scholar 

  33. 33.

    Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    ADS  Article  Google Scholar 

  34. 34.

    Anderson, P.W., Weiss, P.R.: Exchange narrowing in paramagnetic resonance. Rev. Mod. Phys. 25, 269 (1953)

    ADS  Article  Google Scholar 

  35. 35.

    Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Clarendom Press, Oxford (1991)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants No. 11605030, the science and technology top talent support program of Guizhou educational department under Grant No. QJHKYZ[2017]084 and the academic new talent program of Guizhou department of Science and Technology under Grant No. GYU-KJT[2019]-23.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yao Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, Y. Quantifying environmental memory degree from the aspect of environmental sensitivity. Quantum Inf Process 20, 77 (2021). https://doi.org/10.1007/s11128-021-03020-4

Download citation

Keywords

  • Memory degree
  • Environmental sensitivity
  • Memory speed