Locally distinguishing multipartite orthogonal product states with different entanglement resource

Abstract

Recently, entanglement-assisted state discrimination has attracted much attention. However, most of the relevant results are about the bipartite quantum states and very little is known about the multipartite case. In this paper, considering the nonlocal orthogonal product states constructed by Jiang and Xu [Phys. Rev. A 102, 032211 (2020)], we first present one protocol to locally distinguish a set of orthogonal product states in \(3\otimes 3 \otimes 3\) by using a \(2\otimes 2\) maximally entangled state. Then, we generalize the distinguishing method for the class of nonlocal of orthogonal product states in \(\otimes _{j=1}^n{\mathbb {C}}^{d_j}\), where \(n\geqslant 3, d_j\geqslant 2, j=1,2,\ldots ,n\). Furthermore, for another class of orthogonal product states in \(\otimes _{j=1}^n{\mathbb {C}}^{d_j}\), where \(n\geqslant 3, d_j\geqslant 3, j=1,2,\ldots ,n\), we prove that these states can also be distinguished by LOCC with a \(3\otimes 3\) maximally entangled state or two copies of \(2\otimes 2\) maximally entangled states. The above results can let us better understand how to use entanglement resource more efficiently in multipartite quantum systems and also reveal the phenomenon of less nonlocality with more entanglement.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. 2.

    Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385 (1999)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Ghosh, S., Kar, G., Roy, A., Sen, A., Sen, U.: Distinguishability of Bell states. Phys. Rev. Lett. 87, 277902 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Groisman, B., Vaidman, L.: Nonlocal variables with product-state eigenstates. J. Phys. A Math. Gen. 34, 6881 (2001)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89, 147901 (2002)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379 (2003)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Rinaldis, S.D.: Distinguishability of complete and unextendible product bases. Phys. Rev. A 70, 022309 (2004)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Fan, H.: Distinguishability and indistinguishability by localoperations and classical communication. Phys. Rev. Lett. 92, 177905 (2004)

    ADS  Article  Google Scholar 

  9. 9.

    Chen, P.X., Li, C.Z.: Distinguishing the elements of a full product basis set needs only projective measurements and classical communication. Phys. Rev. A 70, 022306 (2004)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Watrous, J.: Bipartite subspaces having no bases distinguishable by local operations and classical communication. Phys. Rev. Lett. 95, 080505 (2005)

    ADS  Article  Google Scholar 

  11. 11.

    Duan, R.Y., Feng, Y., Ji, Z.F., Ying, M.S.: Distinguishing arbitrary multipartite basis unambiguously using local operations and classical communication. Phys. Rev. Lett. 98, 230502 (2007)

    ADS  Article  Google Scholar 

  12. 12.

    Duan, R.Y., Feng, Y., Xin, Y., Ying, M.S.: Distinguishability of quantum states by separable operations. IEEE Trans. Info. Theory 55, 1320 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Yu, N.K., Duan, R.Y., Ying, M.S.: Four locally indistinguishable ququad-ququad orthogonal maximally entangled states. Phys. Rev. Lett. 109, 020506 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    Yang, Y.-H., Gao, F., Tian, G.-J., Cao, T.-Q., Wen, Q.-Y.: Local distinguishability of orthogonal quantum states in a \(2\otimes 2\otimes 2\) system. Phys. Rev. A 88, 024301 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    Yang, Y.-H., Wang, C.-H., Yuan, J.-T., Wu, X., Zuo, H.-J.: Local distinguishability of generalized Bell states. Quantum Inf. Process. 17, 29 (2018)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Zhang, Z.-C., Gao, F., Cao, Y., Qin, S.-J., Wen, Q.-Y.: Local indistinguishability of orthogonal product states. Phys. Rev. A 93, 012314 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Zhang, X., Weng, J., Tan, X., Luo, W.: Indistinguishability of pure orthogonal product states by LOCC. Quantum Inf. Process. 16, 168 (2017)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Croke, S., Barnett, S.M.: Difficulty of distinguishing product states locally. Phys. Rev. A 95, 012337 (2017)

    ADS  Article  Google Scholar 

  19. 19.

    Zhang, Z.-C., Zhang, K.-J., Gao, F., Wen, Q.-Y., Oh, C.H.: Construction of nonlocal multipartite quantum states. Phys. Rev. A 95, 052344 (2017)

    ADS  Article  Google Scholar 

  20. 20.

    Halder, S.: Several nonlocal sets of multipartite pure orthogonal product states. Phys. Rev. A 98, 022303 (2018)

    ADS  Article  Google Scholar 

  21. 21.

    DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Info. Theory 48, 580 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291, 813 (2009)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)

    ADS  Article  Google Scholar 

  25. 25.

    Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    Horodecki, M., Sen(De), A., Sen, U., Horodecki, K.: Local indistinguishability: More nonlocality with less entanglement. Phys. Rev. Lett. 90, 047902 (2003)

  27. 27.

    Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)

    ADS  Article  Google Scholar 

  28. 28.

    Feng, Y., Shi, Y.Y.: Characterizing locally indistinguishable orthogonal product states. IEEE Trans. Info. Theory 55, 2799 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Bandyopadhyay, S.: More nonlocality with less purity. Phys. Rev. Lett. 106, 210402 (2011)

    ADS  Article  Google Scholar 

  30. 30.

    Childs, A.M., Leung, D., Mančinska, L., Ozols, M.: A framework for bounding nonlocality of state discrimination. Commun. Math. Phys. 323, 1121 (2013)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Zhang, Z.-C., Gao, F., Tian, G.-J., Cao, T.-Q., Wen, Q.-Y.: Nonlocality of orthogonal product basis quantum states. Phys. Rev. A 90, 022313 (2014)

    ADS  Article  Google Scholar 

  32. 32.

    Zhang, Z.-C., Gao, F., Qin, S.-J., Yang, Y.-H., Wen, Q.-Y.: Nonlocality of orthogonal product states. Phys. Rev. A 92, 012332 (2015)

    ADS  Article  Google Scholar 

  33. 33.

    Wang, Y.-L., Li, M.-S., Zheng, Z.-J., Fei, S.-M.: The local indistinguishability of multipartite product states. Quantum Inf. Process. 16, 5 (2017)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J., Zuo, H.-J.: Local indistinguishability of multipartite orthogonal product bases. Quantum Inf. Process. 16, 276 (2017)

    ADS  MATH  Article  Google Scholar 

  35. 35.

    Lebl, J., Shakeel, A., Wallach, N.: Local distinguishability of generic unentangled orthonormal bases. Phys. Rev. A 93, 012330 (2016)

    ADS  Article  Google Scholar 

  36. 36.

    Halder, S., Banik, M., Agrawal, S., Bandyopadhyay, S.: Strong quantum nonlocality without entanglement. Phys. Rev. Lett. 122, 040403 (2019)

    ADS  Article  Google Scholar 

  37. 37.

    Cohen, S.M.: Understanding entanglement as resource: locally distinguishing unextendible product bases. Phys. Rev. A 77, 012304 (2008)

    ADS  Article  Google Scholar 

  38. 38.

    Cohen, S.M.: Local distinguishability with preservation of entanglement. Phys. Rev. A 75, 052313 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  39. 39.

    Bandyopadhyay, S., Brassard, G., Kimmel, S., Wootters, W.K.: Entanglement cost of nonlocal measurements. Phys. Rev. A 80, 012313 (2009)

    ADS  Article  Google Scholar 

  40. 40.

    Bandyopadhyay, S., Rahaman, R., Wootters, W.K.: Entanglement cost of two-qubit orthogonal measurements. J. Phys. A Math. Theor. 43, 455303 (2010)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Bandyopadhyay, S., Cosentino, A., Johnston, N., Russo, V., Watrous, J., Yu, N.: Limitations on separable measurements by convex optimization. IEEE Trans. Info. Theory 61, 3593 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Bandyopadhyay, S., Halder, S., Nathanson, M.: Optimal resource states for local state discrimination. Phys. Rev. A 97, 022314 (2018)

    ADS  Article  Google Scholar 

  43. 43.

    Zhang, Z.-C., Gao, F., Cao, T.-Q., Qin, S.-J., Wen, Q.-Y.: Entanglement as a resource to distinguish orthogonal product states. Sci. Rep. 6, 30493 (2016)

    ADS  Article  Google Scholar 

  44. 44.

    Li, L.-J., Gao, F., Zhang, Z.-C., Wen, Q.-Y.: Using entanglement more efficiently in distinguishing orthogonal product states by LOCC. Quantum Inf. Process. 18, 330 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  45. 45.

    Zhang, Z.-C., Wu, X., Zhang, X.: Locally distinguishing unextendible product bases by using entanglement efficiently. Phys. Rev. A 101, 022306 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  46. 46.

    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Bandyopadhyay, S., Halder, S., Nathanson, M.: Entanglement as a resource for local state discrimination in multipartite systems. Phys. Rev. A 94, 022311 (2016)

    ADS  Article  Google Scholar 

  48. 48.

    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Comput. 26, 1484 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    Zhang, Z.-C., Song, Y.-Q., Song, T.-T., Gao, F., Qin, S.-J., Wen, Q.-Y.: Local distinguishability of orthogonal quantum states with multiple copies of \(2\otimes 2\) maximally entangled states. Phys. Rev. A 97, 022334 (2018)

    ADS  Article  Google Scholar 

  51. 51.

    Jiang, D.-H., Xu, G.-B.: Nonlocal sets of orthogonal product states in an arbitrary multipartite quantum system. Phys. Rev. A 102, 032211 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  52. 52.

    Rout, S., Maity, A.G., Mukherjee, A., Halder, S., Banik, M.: Genuinely nonlocal product bases: classification and entanglement assisted discrimination. Phys. Rev. A 100, 032321 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  53. 53.

    Halder, S., Sengupta, R.: Distinguishability classes, resource sharing, and bound entanglement distribution. Phys. Rev. A 101, 012311 (2020)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (Grants No. 61901030, No. 11847210 and No. 61801126), the Beijing Natural Science Foundation (Grant No. 4194088), and the Fundamental Research Funds for the Central Universities (Grant No. 06500172).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhi-Chao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZC., Wang, QL. Locally distinguishing multipartite orthogonal product states with different entanglement resource. Quantum Inf Process 20, 75 (2021). https://doi.org/10.1007/s11128-021-03016-0

Download citation

Keywords

  • Local operations and classical communication
  • Orthogonal product states
  • Local distinguishability
  • Entanglement resource