Skip to main content
Log in

Entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, some new classes of entanglement-assisted quantum MDS codes (EAQMDS codes for short) are constructed via generalized Reed–Solomon codes over finite fields of odd characteristic. Among our constructions, there are many EAQMDS codes with new lengths. The lengths of these EAQMDS codes may not be divisors of \(q^2\pm 1\), which are new and have never been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashikhmin, A., Litsyn, S., Tsfasman, M.: Asymptotically good quantum codes. Phys. Rev. A 63, 032311 (2001)

    Article  ADS  Google Scholar 

  2. Brun, T., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF (4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  4. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996)

    Article  ADS  Google Scholar 

  5. Chen, H.: Some good quantum error-correcting codes from algebraic-geometric codes. IEEE Trans. Inf. Theory 47, 2059–2061 (2001)

    Article  MathSciNet  Google Scholar 

  6. Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16, 303 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17, 273 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. Fan, J., Chen, H., Xu, J.: Constructions of \(q\)-ary entanglement-assisted quantum MDS codes with minimum distance greater than \(q+1.\). Quantum Inf. Comput. 16, 0423–0434 (2016)

    MathSciNet  Google Scholar 

  9. Fang, W., Fu, F.: Some new constructions of quantum MDS codes. IEEE Trans. Inf. Theory 65, 7840–7847 (2019)

    Article  MathSciNet  Google Scholar 

  10. Fang, W., Fu, F., Li, L., Zhu, S.: Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs. IEEE Trans. Inf. Theory 66, 3527–3537 (2020)

    Article  MathSciNet  Google Scholar 

  11. Francisco Revson F. P.:Entanglement-assisted Quantum Codes from Cyclic Codes. arXiv:1911.06384

  12. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good Entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)

    Article  MathSciNet  Google Scholar 

  13. Jin, R., Xie, D., Luo, J.: New classes of entanglement-assisted quantum MDS codes. Quantum Inf. Process. 19, 289 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)

    Article  MathSciNet  Google Scholar 

  15. Koroglu, Mehmet E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18, 44 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lai, C., Ashikhmin, A.: Linear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumerators. IEEE Trans. Inf. Theory 64, 622–639 (2016)

    Article  MathSciNet  Google Scholar 

  17. Li, R., Xu, G., Lu, L.: Decomposition of defining sets of BCH codes and its applications. J. Air. Force Eng. Univ. (Nat. Sci. Ed.) 14, 86–89 (2013). ((in Chinese))

    Google Scholar 

  18. Lin, X.: Quantum cyclic and constacyclic codes. IEEE Trans. Inf. Theory 50, 547–549 (2004)

    Article  MathSciNet  Google Scholar 

  19. Lu, L., Li, R., Guo, L., Ma, Y., Liu, Y.: Entanglement-assisted quantum MDS codes from negacyclic codes. Quantum Inf. Process. 17, 69 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Lu, L., Li, R., Ma, W., Li, R., Ma, Y., Liu, Y., Cao, H.: Entanglement-assisted Quantum MDS Codes from Constacyclic Codes with Large Minimum Distance. arXiv:1803.04168

  21. Lu, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12, 1450015 (2014)

    Article  MathSciNet  Google Scholar 

  22. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. Elsevier, Amsterdam (1977)

    MATH  Google Scholar 

  23. Markus, G., Felix, H., Andreas, W.: Entropic Proofs of Singleton Bounds for Quantum Error-correcting Codes. arxiv:2010.07902

  24. Qian, J., Zhang, L.: New optimal subsystem codes. Discrete Math. 313, 2451–2455 (2013)

    Article  MathSciNet  Google Scholar 

  25. Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr 86, 1565–1572 (2017)

    Article  MathSciNet  Google Scholar 

  26. Qian, J., Zhang, L.: Constructions of new entanglement-assisted quantum MDS and almost MDS codes. Quantum Inf. Process. 18, 71 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinquan Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of lemma 3.1

Denote by \(\xi =(a_{0},a_{1},\cdots ,a_{h-1})\) and \(d=\frac{s-h}{2}+1 \). The system of Eq. 3.1 can be expressed in the matrix form

$$\begin{aligned} A\cdot {\mathbf {u}}^{\mathrm{T}} =(a_{0},a_{1},\cdots ,a_{h-1})^{\mathrm{T}}, \end{aligned}$$

where

$$\begin{aligned} A=\left( \begin{array}{cccc} 1 &{} 1 &{} \cdots &{} 1 \\ g^{\mathrm{dl}-q-1} &{} g^{3(\mathrm{dl}-q-1)} &{} \cdots &{} g^{(2h-1)(\mathrm{dl}-q-1)} \\ \vdots &{} \vdots &{} \vdots &{} \vdots \\ g^{(d+h-2)l-q-1} &{} g^{3[(d+h-2)l-q-1]} &{} \cdots &{} g^{(2h-1)[(d+h-2)l-q-1]} \\ \end{array} \right) . \end{aligned}$$

Let \(x=g^{\mathrm{dl}-q-1}\) and

$$\begin{aligned} A^{\mathrm{T}}=\left( \begin{array}{cccc} 1 &{} x &{} \cdots &{} \mathrm{xg}^{(h-2)l} \\ 1 &{} x^{3} &{} \cdots &{} (\mathrm{xg}^{(h-2)l})^{3} \\ \vdots &{} \vdots &{} \vdots &{} \vdots \\ 1 &{} x^{2h-1} &{} \cdots &{} (\mathrm{xg}^{(h-2)l})^{2h-1} \\ \end{array} \right) . \end{aligned}$$

A routine calculation shows

$$\begin{aligned} \text {det}(A^\mathrm{T})=\frac{1}{x\cdot (\mathrm{xg}^l)\cdot \cdots \cdot (\mathrm{xg}^{(h-2)l})}\left| \begin{array}{cccc} 1 &{} 1 &{} \cdots &{} 1 \\ 1 &{} x^{2} &{} \cdots &{} (\mathrm{xg}^{(h-2)l})^{2} \\ \vdots &{} \vdots &{} \vdots &{} \vdots \\ 1 &{} x^{2h-2} &{} \cdots &{} (\mathrm{xg}^{(h-2)l})^{2h-2} \\ \end{array} \right| . \end{aligned}$$

It is obvious that \(\text {det}(A)\ne 0\) and \({\mathbf {u}}=(u_{0},u_{1},\cdots ,u_{h-1})\in (\mathbb {F}_{q^2})^h \).

Next we will show that (2) has a solution \({\mathbf {u}}=(u_{0},u_{1},\cdots ,u_{h-1})\in (\mathbb {F}^*_q)^h \). Let

$$\begin{aligned}&\mathbf {\beta _{0}}=(1,1,\cdots ,1), \\&\mathbf {\beta _{i}}=\left( g^{(d+i-1)l-q-1},g^{3[(d+i-1)l-q-1]},\cdots ,g^{(2h-1)[(d+i-1)l-q-1]}\right) \\&\text {for}\; i=1,2,\cdots ,h-1. \end{aligned}$$

It is easy to verify \(\beta _{i}^q=\beta _{h-i}\) for \(i=1,2,\cdots ,h-1.\) Assume \(\zeta =g^{\frac{q+1}{2}}\), then \(\zeta ^{q}=-\zeta .\) Raising all Eq. 3.1 to their qth powers leads to

$$\begin{aligned} \left\{ \begin{array}{lll} \beta _{0}{\mathbf {u}}=a_{0}\\ \\ (\beta _{1}+\beta _{h-1}){\mathbf {u}}=2a_{1}\\ \\ \vdots \\ \\ (\beta _{\frac{h-1}{2}}+\beta _{\frac{h+1}{2}}){\mathbf {u}}=2a_{\frac{h-1}{2}}\\ \\ \frac{\beta _{1}-\beta _{h-1}}{\zeta }{\mathbf {u}}=0\\ \\ \vdots \\ \\ \frac{\beta _{\frac{h-1}{2}}-\beta _{\frac{h+1}{2}}}{\zeta }{\mathbf {u}}=0.\end{array} \right. \end{aligned}$$
(6)

Denote by \(\alpha =\left( a_{0},2a_{1},\cdots ,2a_{\frac{h-1}{2}},0,\cdots ,0\right) ^\mathrm{T}\). The above Eq. (6) can be reformulated as \(B{\mathbf {u}}=\alpha \) with

$$\begin{aligned}B=\left( \beta _0^\mathrm{T}, \beta _1^\mathrm{T}+\beta ^\mathrm{T}_{h-1},\cdots , \frac{\beta ^\mathrm{T}_{1}-\beta ^\mathrm{T}_{h-1}}{\zeta },\cdots , \frac{\beta ^\mathrm{T}_{\frac{h-1}{2}} -\beta ^\mathrm{T}_{\frac{h+1}{2}}}{\zeta }\right) ^\mathrm{T}.\end{aligned}$$

It is easy to verify that all the entries of B are in \(\mathbb {F}_{q}\). Suppose

$$\begin{aligned} S=\left\{ {\mathbf {u}}\in \mathbb {F}_{q}^{n}|B{\mathbf {u}}=\alpha ,\;a_{i}\in \mathbb {F}^*_q, 1\le i\le h-1\right\} . \end{aligned}$$

Then, \(|S|=(q-1)^{\frac{h+1}{2}}\) since B is invertible. For \(0\le i\le h-1\), define

$$\begin{aligned} S_{i}=\left\{ {\mathbf {u}}\in \mathbb {F}_{q}^{n}|u_{i}=0,\;B{\mathbf {u}}=\alpha ,\;a_{j}\in \mathbb {F}^*_q\;\text {for all}\,0\le j\le \frac{h-1}{2}\; \right\} \;. \end{aligned}$$

Then, the set of solutions to (6), denoted by V, is

$$\begin{aligned} V=\overline{ S_{1}\bigcup S_{2}\bigcup \cdots \bigcup S_{\frac{h+1}{2}}}, \end{aligned}$$

where \({\overline{T}}=S-T\) for any subset \(T\subseteq S.\) By Inclusion–Exclusion principle,

$$\begin{aligned} |V|=|S|-\sum \nolimits ^{h-1}_{i=0}|S_{i}|+r \end{aligned}$$

for some \(r\ge 0.\) It follows that

$$\begin{aligned} |V|=(q-1)^{\frac{h+1}{2}}-\left( {\begin{array}{c}h\\ 1\end{array}}\right) (q-1)^{\frac{h-1}{2}}+r. \end{aligned}$$

Obviously \(|V|>0\). We only consider the case h is odd. The case h being even is similar and we omit the details. Therefore, there exists a solution satisfying \(u_{i}\in \mathbb {F}_{q}^{*}(i=0,1,\cdots ,h-1).\)

This completes the proof. \(\square \)

Proof of Lemma 3.3

We can calculate directly,

$$\begin{aligned} \langle {\mathbf {a}}_{2}^{qi+j},{\mathbf {v}}_{2}^{q+1}\rangle&=\sum \nolimits _{k=0}^{r-1}\sum \nolimits _{\nu =0}^{m-1}(g^{k}\theta ^{\nu })^{qi+j}\cdot \theta ^{\nu \cdot \frac{q+1}{2}}\\&=\sum _{k=0}^{r-1}g^{k(qi+j)}\sum _{\nu =0}^{m-1}\theta ^{\nu (qi+j+\frac{q+1}{2})}.\end{aligned}$$

It suffices to show the identity

$$\begin{aligned}\sum \nolimits _{v=0}^{m-1}\theta ^{v(qi+j+ \frac{q+1}{2})}=0\end{aligned}$$

holds for all \( 0\le i,j\le \frac{q+1}{2}+ \frac{q-1}{t}-2 ,\;t \ge 2.\) It is easy to check that the identity holds if and only if \(m\not \mid qi+j+\frac{q+1}{2}\). On the contrary, assume that \(m\mid \mathrm{qi}+j+\frac{q+1}{2}\). Let

$$\begin{aligned} qi+j+\frac{q+1}{2}=\mu \cdot m=q\cdot \frac{\mu (q-1)}{t}+\frac{\mu (q-1)}{t} \end{aligned}$$
(7)

where \(\mu \) is an integer. Since \(t\ge 2\), we have \(qi+j+\frac{q+1}{2}<q^{2}-1\), which implies \(0<\mu <t\). It suffices to discuss the following two cases.

Case 1::

If \(j+\frac{q+1}{2}\le q-1\), comparing remainder and quotient of module q on both sides of (7), we can deduce \(i=j+\frac{q+1}{2}=\mu \cdot \frac{q-1}{t}\). Since t is even, then \(\frac{q-1}{t}\mid \frac{q-1}{2}\). From \(\frac{q-1}{t}\mid j+1+\frac{q-1}{2}\), we can deduce that \(\frac{q-1}{t}\mid j+1\). Since \(j+1\ge 1\), then \(j+1\ge \frac{q-1}{t}\). Therefore, \(i=j+\frac{q+1}{2}\ge \frac{q+1}{2}+\frac{q-1}{t}-1\), which is a contradiction.

Case 2::

If \(j+\frac{q+1}{2}\ge q\), it takes

$$\begin{aligned} qi+j+\frac{q-1}{2}=q(i+1)+\left( j-\frac{q-1}{2}\right) =q\cdot \frac{\mu (q-1)}{t}+\frac{\mu (q-1)}{t}. \end{aligned}$$

In a similar way, \(j-\frac{q-1}{2}=i+1=\mu \cdot \frac{q-1}{t}\) which implies \(\frac{q-1}{t}\mid i+1\). Since \(i+1\ge 1\), then \(i+1\ge \frac{q-1}{t}\). Therefore, \(j=i+1+\frac{q+1}{2}\ge \frac{q+1}{2}+\frac{q-1}{t}-1\), which is a contradiction.

As a result, \(m\not \mid \mathrm{qi}+j+\frac{q+1}{2}\) which yields

$$\begin{aligned}\sum _{v=0}^{m-1}\theta ^{v(qi+j+ \frac{q+1}{2})}=0\end{aligned}$$

for all \( 0\le i,j\le \frac{q+1}{2}+ \frac{q-1}{t}-2 .\) This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, R., Cao, Y. & Luo, J. Entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes. Quantum Inf Process 20, 73 (2021). https://doi.org/10.1007/s11128-021-03010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03010-6

Keywords

Navigation