An improved QKD protocol without public announcement basis using periodically derived basis


The quantum key distribution (QKD) protocol provides an absolutely secure way to distribute secret keys, where security can be guaranteed by quantum mechanics. To raise the key generation rate of classical BB84 QKD protocol, Hwang et al. (Phys Lett A 244(6):489–494, 1998) proposed a subtle variation (Hwang protocol), in which a pre-shared secret string is used to generate the consistent basis. Although the security of Hwang protocol has been verified in ideal condition, its practicality is still being studied in more depth. In this work, we propose a simple attack strategy to obtain all preparation basis by stealing partial information in each round. To eliminate this security threat, we further propose an improved QKD protocol using the idea of iteratively updating the basis. Furthermore, we apply our improved method to decoy-state QKD protocol and double its key generation rate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizika 1, 195–200 (1964)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Gottesman, D., Lo, H., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. In: Quantum Information Computation, pp. 136 (2004)

  8. 8.

    Grasselli, F., Kampermann, H., Bruß, D.: Finite-key effects in multipartite quantum key distribution protocols. New J. Phys. 20(11), 113014 (2018)

    ADS  Article  Google Scholar 

  9. 9.

    Hamlin, B., Song, F.: Quantum security of hash functions and property-preservation of iterated hashing. Post-quantum cryptography, pp. 329–349. Springer, New York (2019)

    Google Scholar 

  10. 10.

    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    Hwang, W.Y., Ahn, D.D., Hwang, S.W.: Eavesdropper’s optimal information in variations of Bennett–Brassard 1984 quantum key distribution in the coherent attacks. Phys. Lett. A 279(3–4), 133–138 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Hwang, W.Y., Koh, I.G., Han, Y.D.: Quantum cryptography without public announcement of bases. Phys. Lett. A 244(6), 489–494 (1998)

    ADS  Article  Google Scholar 

  13. 13.

    Hwang, W.Y., Wang, X.B., Matsumoto, K., et al.: Shor-preskill-type security proof for quantum key distribution without public announcement of bases. Phys. Rev. A 67(1), 012302 (2003)

    ADS  Article  Google Scholar 

  14. 14.

    Ji, S.W., Lee, S.B., Long, G.: Secure quantum key expansion between two parties sharing a key. J. Korean Phys. Soc. 51(4), 1245 (2007)

    ADS  Article  Google Scholar 

  15. 15.

    Lin, S., Liu, X.F.: A modified quantum key distribution without public announcement bases against photon-number-splitting attack. Int. J. Theor. Phys. 51(8), 2514–2523 (2012)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Lo, H.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    ADS  Article  Google Scholar 

  17. 17.

    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    ADS  Article  Google Scholar 

  19. 19.

    Price, A.B., Rarity, J.G., Erven, C.: Quantum key distribution without sifting. arXiv:1707.03331 (2017)

  20. 20.

    Renner, R., Gisin, N., et al.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)

    ADS  Article  Google Scholar 

  21. 21.

    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    ADS  Article  Google Scholar 

  23. 23.

    Trushechkin, A.S., Tregubov, P.A., Kiktenko, E.O., Kurochkin, Y.V., Fedorov, A.K.: Quantum-key-distribution protocol with pseudorandom bases. Phys. Rev. A 97, 012311 (2018)

    ADS  Article  Google Scholar 

  24. 24.

    Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    ADS  Article  Google Scholar 

  25. 25.

    Yang, Y., chen, F., Zhang, X., Yu, J., Zhang, P.: Research on the hash function structures and its application. Wirel. Person. Commun. 94(4), 2969–2985 (2017)

    Article  Google Scholar 

  26. 26.

    Yang, Yy, Luo, Lz, Yin, Gs: A new secure quantum key expansion scheme. Int. J. Theor. Phys. 52(6), 2008–2016 (2013)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Yuen, H.P.: Direct use of secret key in quantum cryptography. arXiv:quant-ph/0603264 (2006)

  28. 28.

    Yuen, H.P.: Key generation: foundations and a new quantum approach. IEEE J. Sel. Top. Quant. Electron. 15(6), 1630–1645 (2009)

    ADS  Article  Google Scholar 

Download references


This work is supported in part by Anhui Initiative in Quantum Information Technologies under grant No. AHY150300 and Youth Innovation Promotion Association Chinese Academy of Sciences (CAS) under grant No. 2016394.

Author information



Corresponding author

Correspondence to Kaiping Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, Q., Xue, K., Li, Z. et al. An improved QKD protocol without public announcement basis using periodically derived basis. Quantum Inf Process 20, 69 (2021).

Download citation


  • Quantum key distribution
  • Derived basis
  • PNS attack