Probability and entanglement evolutions for Szegedy’s quantum search on the one-dimensional cycle with self-loops

Abstract

The Szegedy’s quantum walk can give rise to a quadratic speed-up when the Markov chain is ergodic and symmetric. However, the quantum search on a one-dimensional (1D) cycle graph does not achieve a speed-up. In this paper, we study the effects of self-loops on the 1D cycle by Szegedy’s quantum search. First, with the help of self-loops, Szegedy’s quantum search can increase the success probability of finding a marked vertex on the 1D cycle. Second, the general expressions for the evolving states and the success probability on the 1D cycle with self-loops are explicitly presented by the symmetric tridiagonal matrix. The evolution of success probability is slower and smaller with the increase in the weight of the self-loops. Third, an approximate entanglement formula of the success probability is derived by a concave function, where the entanglement is measured by the reduced von Neumann entropy. The existence of a turning point is confirmed, and it was found to depend on the maximum eigenvalue of the initial superposition state and the number of marked vertices. Before the turning point, the entanglement first increased and then decreased.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Štefaňák, M., Jex, I., Kiss, T.: Recurrence and pólya number of quantum walks. Phys. Rev. Lett. 100(2), 020501 (2008)

    ADS  Article  Google Scholar 

  2. 2.

    Ambainis, A., Prūsis, K., Vihrovs, J., Wong, T.G.: Oscillatory localization of quantum walks analyzed by classical electric circuits. Phys. Rev. A 94(6), 062324 (2016)

    ADS  Article  Google Scholar 

  3. 3.

    Anantharaman, N.: Quantum ergodicity on regular graphs. Commun. Math. Phys. 353(2), 633–690 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Kajiwara, T., Konno, N., Koyama, S., Saito, K.: Periodicity for the 3-state quantum walk on cycles. Quantum Inf. Comp. 19, 1081–1088 (2019)

    MathSciNet  Google Scholar 

  5. 5.

    Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1099–1108. Society for Industrial and Applied Mathematics

  6. 6.

    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)

    ADS  Article  Google Scholar 

  7. 7.

    Wong, T.G.: Grover search with lackadaisical quantum walks. J Phys. A-Math. Theor. 48(43), 435304 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Szegedy, M.: Quantum speed-up of markov chain based algorithms. In: 45th Annual IEEE Symposium on Foundations of Computer Science (2004)

  9. 9.

    Wong, T.G.: Equivalence of Szegedy’s and coined quantum walks. Quantum Inf. Proc. 16(9), 215 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Paparo, G.D., Martin-Delgado, M.: Google in a quantum network. Sci. Rep. 2, 444 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    Santos, R.A.M., Portugal, R.: Quantum hitting time on the complete graph. Int. J. Quantum. Inf. 8(05), 881–894 (2010)

    Article  Google Scholar 

  12. 12.

    Santos, R.A.M., Portugal, R., Fragoso, M.D.: Decoherence in quantum Markov chains. Quantum Inf. Proc. 13(2), 559–572 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Wong, T.G., Santos, R.A.: Exceptional quantum walk search on the cycle. Quantum Inf. Proc. 16(6), 154 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Prūsis, K., Vihrovs, J., Wong, T.G.: Stationary states in quantum walk search. Phys. Rev. A 94(3), 032334 (2016)

    ADS  Article  Google Scholar 

  15. 15.

    Wang, K., Wu, N., Xu, P., Song, F.: One-dimensional lackadaisical quantum walks. J Phys. A-Math. Gen 50, 505303 (2017)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Wong, T.G.: Faster search by lackadaisical quantum walk. Quantum Inf. Proc. 17(3), 68 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. A Math. Phys. Eng. Sci. 459(2), 2011–2032 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Li, Y., Qiao, Y., Wang, X., Duan, R.: Tripartite-to-bipartite entanglement transformation by stochastic local operations and classical communication and the structure of matrix spaces. Commun. Math. Phys. 358(2), 791–814 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Pan, M., Qiu, D., Zheng, S.: Global multipartite entanglement dynamics in Grover’s search algorithm. Quantum Inf. Proc. 16(9), 211 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Pan, M., Qiu, D., Mateus, P., Gruska, J.: Entangling and disentangling in grover’s search algorithm. Theor. Comput. Sci. 773, 138–152 (2019)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Pan, M., Qiu, D.: Operator coherence dynamics in grover’s quantum search algorithm. Phys. Rev. A 100(1), 012349 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Shi, H., Liu, S., Wang, X., Yang, W., Yang, Z., Fan, H.: Coherence depletion in the grover quantum search algorithm. Phys. Rev. A 95(3), 032307 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Fang, Y., Kaszlikowski, D., Chin, C., Tay, K., Kwek, L., Oh, C.: Entanglement in the grover search algorithm. Phys. Lett. A 345(4–6), 265–272 (2005)

    ADS  Article  Google Scholar 

  24. 24.

    Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications. Academic Press, Cambridge (1979)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61871120 and 61502101), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191259), the Six Talent Peaks Project of Jiangsu Province (Grant No. XYDXX-003), and the Fundamental Research Funds for the Central Universities.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhihao Liu or Hanwu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of Eq. (59)

When \(m = 1,k = 1\) in Eq. (27), according to the definition of the integral, we can derive

$$\begin{aligned}&\sum \limits _{j = 1}^{n - 1} {\sin \frac{\pi }{n} +\sin \frac{j\pi }{n}+ \cdots + \sin \frac{{\left( {n - 1} \right) \pi }}{n}} \\&\quad =\frac{n}{\pi }\sum \limits _{i = 2}^n {\frac{\pi }{n}\sin \frac{{\left( {i - 1} \right) \pi }}{n}} = \frac{n}{\pi }\int _0^\pi {\sin x} \text {d}x = \frac{{2n}}{\pi },\\&f = {\sum \limits _{j = 1}^{n - 1} {{{\left( {\sin \frac{\pi }{n}} \right) }^2} +{{\left( {\sin \frac{j\pi }{n}} \right) }^2}+ \cdots + \left( {\sin \frac{{\left( {n - 1} \right) \pi }}{n}} \right) } ^2} \\&\quad = \frac{n}{\pi }\int _0^\pi {{{\left( {\sin x} \right) }^2}} \text {d}x = \frac{n}{2}. \end{aligned}$$

When \(m = 1,k > 1\) and k is odd,

$$\begin{aligned}&\sum \limits _{j = 1}^{n - 1} {\sin \frac{{k\pi }}{n} +\sin \frac{jk\pi }{n} \cdots + \sin \frac{{2\left( {n - 1} \right) k\pi }}{n}} \\&\quad \le \frac{n}{{k\pi }}\sum \limits _{i = 2}^n {\frac{{k\pi }}{n}\sin \frac{{\left( {i - 1} \right) k\pi }}{n}} = \frac{{2n}}{{k\pi }}, \end{aligned}$$

where f does not change. So

$$\begin{aligned} \frac{{\sum \limits _k {\left( {\sum \limits _{j = 1}^{n - 1} {\sin \left( {\frac{{jk\pi }}{n}} \right) } } \right) } }}{{\sqrt{n} {{\left( {\sqrt{f} \sqrt{2} \sin {\theta _k}} \right) }^2}}} \le \sum \limits _k {\frac{2}{{k\pi {{\left( {\sin {\theta _k}} \right) }^2}\sqrt{n} }}}. \end{aligned}$$
(A.1)

Case 1: for the coefficient of \(\left| {{c_{1,1}}} \right| \),

$$\begin{aligned}&\left| {{c_{1,1}}} \right| \le \left| \sum \limits _k {\frac{2}{{k\pi {{\left( {\sin {\theta _k}} \right) }^2}\sqrt{n} }}\sqrt{b} } \sin \frac{{k\pi }}{n}2\cos \left( {2{\theta _k}t} \right) 2\left( {1 - \cos {\theta _k}} \right) \right| \\&\quad \le \left| \frac{{2\sqrt{b} }}{{\sqrt{n} }}\sum \limits _k {\frac{{4\cos \left( {2{\theta _k}t} \right) }}{{k\pi \left( {1 + \cos {\theta _k}} \right) }}} \frac{{k\pi }}{n}\right| . \end{aligned}$$

Since \( - 2 \le \frac{{4\cos \left( {2{\theta _k}t} \right) }}{{\left( {1 + \cos {\theta _k}} \right) }} \le 2\), we have \(\left| {{c_{1,1}}} \right| < \frac{{2\sqrt{b} }}{{n\sqrt{n} }} \times 2 \times \frac{n}{2} = \frac{{2\sqrt{b} }}{{\sqrt{n} }}\). So

$$\begin{aligned} \left| {{c_{1,1}}} \right| \le \frac{{\sqrt{2b} }}{{\sqrt{n} }}. \end{aligned}$$
(A.2)

Case 2: for \(\left| {{c_{n,1}}} \right| \),

$$\begin{aligned}&\left| {{c_{n,1}}} \right| \le \left| {\sum \limits _k {\frac{2}{{k\pi {{\left( {\sin {\theta _k}} \right) }^2}\sqrt{n} }}\sqrt{a} } \sin \frac{{k\pi }}{n}\left( {\cos \left( {2{\theta _k}t} \right) - \cos \left( {2{\theta _k}t + {\theta _k}} \right) } \right) } \right| \\&\quad < \left| \frac{{\sqrt{a} }}{{\sqrt{n} }}\sum \limits _k {\frac{{{\theta _k}}}{{k\pi \left( {\left( {1 - \cos 2{\theta _k}} \right) /2} \right) }}} \frac{{k\pi }}{n}\right| , \end{aligned}$$

where \(\left| {\cos \alpha - \cos \beta } \right| \le \left| {\alpha - \beta } \right| \).

Since \(1 - \cos \left( {{\theta _k}} \right) \ge \frac{{{\theta _k}^2}}{8}\), then \(1 - \cos \left( {2{\theta _k}} \right) \ge \frac{{{\theta _k}^2}}{2}, \left( {0 \le {\theta _k} \le \frac{\pi }{2}} \right) \).

Then, \(\left| {{c_{n,1}}} \right| \le \frac{{\sqrt{a} }}{{\sqrt{n} }}\sum \limits _k {\frac{2}{{\left( {{\theta _k}} \right) }}} \frac{1}{n}\). Due to \({\theta _k} \approx \frac{k}{n}\) and k is odd, we can obtain approximately \(\left| {{c_{n,1}}} \right| \le \frac{{\sqrt{a} }}{{\sqrt{n} }}\sum \limits _k {\frac{1}{k}}\) (k is odd), where \(\sum \limits _k {\frac{1}{k}}\) is the harmonic series. When n is finite, the sum of the harmonic series can be calculated. Thus,

$$\begin{aligned} \left| {{c_{n,1}}} \right| \le \frac{{2\sqrt{a} }}{{\sqrt{n} }}. \end{aligned}$$
(A.3)

Case 3: for \(\left| {{c_{n,n}}} \right| \),

$$\begin{aligned} \left| {{c_{n,n}}} \right| = \frac{{\sqrt{b} }}{{\sqrt{n} }}. \end{aligned}$$
(A.4)

Case 4: for \(\left| {{c_{2,1}}} \right| \),

$$\begin{aligned}&\left| {{c_{2,1}}} \right| \le \left| \sum \limits _k {\frac{{2 \times 2\sqrt{a} }}{{k\pi {{\left( {\sin {\theta _k}} \right) }^2}\sqrt{n} }}} \left( \begin{array}{l} \sin \frac{{2k\pi }}{n}\left( {\left( {1 - \cos {\theta _k}} \right) \cos \left( {2{\theta _k}t} \right) - \sin {\theta _k}\sin \left( {2{\theta _k}t} \right) } \right) \\ + \sin \frac{{k\pi }}{n}\left( {\left( {1 - \cos {\theta _k}} \right) \cos \left( {2{\theta _k}t} \right) + \sin {\theta _k}\sin \left( {2{\theta _k}t} \right) } \right) \end{array} \right) \right| \\&\quad \approx \left| \sum \limits _k {\frac{2}{{k\pi {{\left( {\sin {\theta _k}} \right) }^2}\sqrt{n} }}2\sqrt{a} } \left( {2\sin \frac{{k\pi }}{n}\left( {\left( {1 - \cos {\theta _k}} \right) \cos \left( {2{\theta _k}t} \right) } \right) } \right) \right| . \end{aligned}$$

It is the same as \(\left| {{c_{1,1}}} \right| \), then

$$\begin{aligned} \left| {{c_{2,1}}} \right| \le \frac{{\sqrt{2a} }}{{\sqrt{n} }}. \end{aligned}$$
(A.5)

Case 5: for \(\left| {{c_{1,n}}} \right| \),

$$\begin{aligned} \left| {{c_{1,n}}} \right| = \left| {{c_{2,1}}} \right| \le \frac{{\sqrt{2a} }}{{\sqrt{n} }}. \end{aligned}$$
(A.6)

Thus, \({r_1} = \left| {{c_{n,1}} \cdot {c_{1,1}}} \right| + \left| {{c_{n,n}} \cdot {c_{1,n}}} \right| + \left| {{c_{n,1}} \cdot {c_{2,1}}} \right| < \frac{{2\sqrt{2ab} + \sqrt{2ab} + 2\sqrt{2} a}}{n}\), so

$$\begin{aligned} \sqrt{2} {r_1} < \frac{{6\sqrt{ab} + 4a}}{n}. \end{aligned}$$

Compared to \({\lambda _{0\max }} = \frac{{ 4\sqrt{ab} + 6a}}{n}\) in Eq. (39), we can conclude \(\sqrt{2}{r_1} \le {\lambda _{0\max }}\) in Eq. (59).

When \(m \ge 2\), these results still hold by substituting \(m\ge 2\) into \(m=1\).

Appendix B Proof of Eq. (60)

Similar, \(m \ge 1\), when \(1 \le j \le n - m\), \(\left| {{c_{j,j}}} \right| \approx \left| {{c_{\mathrm{{1,1}}}}} \right| \le \frac{{\sqrt{2b} }}{{\sqrt{n} }}\), \(\left| {{c_{j,j + 1}}} \right| \approx \left| {{c_{\mathrm{{2,1}}}}} \right| \le \frac{{\sqrt{2a} }}{{\sqrt{n} }}\). Thus,

$$\begin{aligned}&\left\| {{\rho ^X}} \right\| _1 = \frac{{4\left| {{c_{j,j}}{c_{j,j + 1}}} \right| + {c_{j,j}}^2 + 3{c_{j,j + 1}}^2 + \left| {{c_{n,1}}{c_{j,j + 1}}} \right| }}{n}\nonumber \\&\quad \le \frac{{2b + 6a + 8\sqrt{ab} + 2\sqrt{2} a}}{n}\nonumber \\&\quad \approx \frac{{2b + 6a + 8\sqrt{ab} }}{n}\nonumber \\&\quad = 2{\lambda _{0\max }}. \end{aligned}$$
(B.1)

Appendix C Proof of Eq. (69)

Similar, \(m \ge 2\), where

$$\begin{aligned} {r_1}^\prime&= \left| {{c_{n,1}}\cdot {c_{1,1}}} \right| + \left| {{c_{n,n}}\cdot {c_{1,n}}} \right| + \left| {{c_{n,1}}\cdot {c_{2,1}}} \right| + \left| {{c_{n,n - 1}}\cdot {c_{n - 2,n - 1}}} \right| \nonumber \\&\quad + \left| {{c_{n,n - 1}}\cdot {c_{n - 1,n - 1}}} \right| \nonumber \\&\quad + \left| {{c_{n,n}}\cdot {c_{n - 1,n}}} \right| \nonumber \\&\le {\lambda _{0\max }} + \frac{{\sqrt{2a} + 2\sqrt{ab} }}{n}\nonumber \\&<2{\lambda _{0\max }}. \end{aligned}$$
(C.1)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Liu, Z., Chen, H. et al. Probability and entanglement evolutions for Szegedy’s quantum search on the one-dimensional cycle with self-loops. Quantum Inf Process 20, 51 (2021). https://doi.org/10.1007/s11128-021-02994-5

Download citation

Keywords

  • Szegedy’s quantum search
  • Self-loops
  • Tridiagonal matrix
  • Entanglement measure
  • Turning point