New flexible quantum private query protocol against rotation noise

Abstract

The quantum privacy query protocol (QPQ) is faced with low query efficiency, transmission channel noise, and low transmission efficiency problems. The quantum-privacy query protocol proposed by us aims to achieve a better quantum-privacy block query effect and has the function of anti-rotation noise. To solve the collective rotation noise in the transmission channel, we propose a one-way QPQ protocol based on four particles. The four-particle states {\(\left| {\phi_{0} } \right\rangle\), \(\left| {\phi_{1} } \right\rangle\), \(\left| {\phi_{0} ^{\prime}} \right\rangle\), \(\left| {\phi_{1} ^{\prime}} \right\rangle\)} can be entangled by two Bell states {\(\left| {\Phi^{ + } } \right\rangle ,\left| {\Psi^{ - } } \right\rangle\)} with anti-noise properties. In general, the unidirectional quantum privacy query has more advantages than a bidirectional quantum privacy query. Besides, the post-processing scheme Yang et al. (Quantum Inf Process 15(9):38333840, 2016) can not only protect the parity result of the random key but also guarantee the security of the protocol. In the security analysis, we prove the security of the user and database.

This is a preview of subscription content, access via your institution.

Figure1
Figure2

References

  1. 1.

    Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 22301–22306 (2011)

    ADS  Article  Google Scholar 

  2. 2.

    Chor, B., et al.: Private information retrieval. J. ACM 45, 965–981 (1998)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84, 022313 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    Gao, F., Liu, B., Wen, Q.Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20(16), 17411 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    Yang, Y.G., Sun, S.J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13(3), 805–813 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Yang, Y.G., Zhang, M.O., Yang, R.: Private database queries using one quantum state. Quantum Inf. Process. 14(3), 1017–1024 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Post-processing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    Liu, B., Gao, F., Huang, W., Wen, Q.Y.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58 (10), (2015)

  9. 9.

    Sun, S.J., Yang, Y.G., Zhang, M.O.: Relativistic quantum private database queries. Quantum Inf. Process. 14(4), 1443–1450 (2015)

    ADS  Article  Google Scholar 

  10. 10.

    Shi, W.X., Liu, X., Wang, J., Tang, C.J.: Multi-bit quantum private query. Commun. Theor. Phys. 64(3), 299–304 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Shi, R.H., Mu, Y., Zhong, H., Zhuang, S.: Comment on “secure quantum private information retrieval using phase-encoded queries.” Phys. Rev. A 94, 066301 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A. 93 (4), (2016)

  13. 13.

    Xu, S.W., Sun, Y., Lin, S.: Quantum private query based on single-photon interference. Quantum Inf. Process. 15(8), 3301–3310 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Yang, Y.G., Liu, Z.C., Chen, X.B., Cao, W.-F., Zhou, Y.-H., Shi, W.-M.: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15(9), 3833–3840 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Yang, Y.G., Liu, Z.C., Li, J., et al.: Quantum private query with perfect user privacy against a joint-measurement attack. Phys. Lett. A 380(48), 4033–4038 (2016)

    ADS  Article  Google Scholar 

  16. 16.

    Chang, Y., Zhang, S. B., Zhu, J. M.: Comment on “flexible protocol for quantum private query based on B92 protocol”. Quantum Inf. Process. 16 (3), (2017)

  17. 17.

    Xu, M., Shi, R. H., Luo, Z. Y., Peng, Z. W.: Nearest private query based on quantum oblivious key distribution. Quantum Inf. Process. 16 (12), (2017)

  18. 18.

    Yang, Y.G., Yang, R., Cao, W.F., Chen, X.B., Zhou, Y.H., Shi, W.M.: Flexible quantum oblivious transfer. Int. J. Theor. Phys. 56(4), 1286–1297 (2017)

    Article  Google Scholar 

  19. 19.

    Gao, X., Chang, Y., Zhang, S.B., Yang, F., Zhang, Y.: Quantum private query based on bell state and single photons. Int. J. Theor. Phys. 57(7), 1983–1989 (2018)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Wei, C. Y., Cai, X. Q., Liu, B., Wang, T. Y., Gao, F.: A Generic Construction of Quantum-Oblivious-Key-Transfer-Based Private Query with Ideal Database Security and Zero Failure. IEEE Trans. Comput. 67 (1), (2018)

  21. 21.

    Chang, Y., Zhang, S.B., Wan, G.G., Yan, L.L., Zhang, Y., Li, X.Y.: Practical two-way QKD-based quantum private query with better performance in user privacy. Int. J. Theor. Phys. 58(7), 2069–2080 (2019)

    Article  Google Scholar 

  22. 22.

    Gao, F., Qin, S., Huang, W., Wen, Q. Y.: Quantum private query: A new kind of practical quantum cryptographic protocol. Sci. China Phys. Mech. Astron. 62 (7), (2019)

  23. 23.

    Liu, B., Gao, Z.F., Xiao, D., et al.: QKD-based quantum private query protocol in the single-photon interference communication system. IEEE Access 7, 104749–104758 (2019)

    Article  Google Scholar 

  24. 24.

    Wang, Y., Guo, F.Z., Liu, L., Huang, W., Wen, Q.Y.: A new protocol for quantum private query against joint-measurement attack. Int. J. Theor. Phys. 58(6), 1828–1835 (2019)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Xiao, H., Huang, W. H., Zhou, M.: An efficient quantum private query protocol based on oracle and grover iteration. Int. J. Theor. Phys. 58 (9), (2019)

  26. 26.

    Huang, W., Su, Q., Wu, X., Li, Y.B., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53(9), 2891–2901 (2014)

    Article  Google Scholar 

  27. 27.

    Chang, Y., Zhang, S.B., Han, G.H., Sheng, Z.W., Yan, L.L., Xiong, J.X.: Quantum private query protocol based on two non-orthogonal states. Entropy 18(5), 163 (2020)

    ADS  Article  Google Scholar 

  28. 28.

    Wang, T.Y., Wang, S.Y., Ma, J.F.: Robust quantum private queries. Int. J. Theor. Phys. 55(7), 3309–3317 (2016)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Yang, Y. G., Liu, Z. C., Chen, X. B., Zhou, Y. H., Shi, W. M.: Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Sci. China Phys. Mech. Astron. 60 (12), (2017)

  30. 30.

    Chang, Y., Xiong, J.X., Gao, X., Zhang, S.B., Yan, L.L.: Quantum private query protocol based on EPR pairs. Chin. J. Electron. 27(2), 256–262 (2018)

    Article  Google Scholar 

  31. 31.

    Li, N., Li, J., Chen, X., Yang, Y.: Quantum private query with perfect performance universally applicable against collective-noise. IEEE Access 7, 29313–29319 (2019)

    Article  Google Scholar 

  32. 32.

    Zhao J.B., Zhang W.B., Ma Y.L., Zhang X.H., Ma H.Y.: Development of Quantum Private Queries Protocol on Collective-Dephasing Noise Channel. Applied Sciences. 10 (6), (2020)

  33. 33.

    Wei, C.Y., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci Rep. 4, 7537 (2014)

    Article  Google Scholar 

  34. 34.

    Pei T.R., Meng X.L., Wei C.Y., Gao F., Tian S.J., Deng Q.Y.: Practical quantum private query of blocks based on the two-dimensional QKD system. Quantum Information Processing. 18 (8), (2019)

  35. 35.

    Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    Herzog U, Bergou JA: Optimum unambiguous discrimination of two mixed quantum states. Physical Review A. 71 (5), (2005)

  37. 37.

    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (2019)

    Google Scholar 

  38. 38.

    Yan, L.L., Zhang, S.B., Chang, Y.: Measure-resend semi-quantum private comparison scheme using GHZ class states. CMC-computers materials & continua. 61(2), 877–887 (2019)

    Article  Google Scholar 

  39. 39.

    Sun, Y.H., Yan, L.L., Chang, Y.: Two semi-quantum secure direct communication protocols based on Bell states. Mod. Phys. Lett. A 34(1), 1950004 (2019)

    ADS  Article  Google Scholar 

  40. 40.

    Yan, L.L., Chang, Y., Zhang, S.B., Han, G.H., Sheng, Z.W.: A quantum multi-proxy weak blind signature scheme based on entanglement swapping. Int. J. Theor. Phys. 56(2), 634–642 (2017)

    Article  Google Scholar 

  41. 41.

    Yang, Y.-G., Sun, S.-J., Wang, Y.: Quantum oblivious transfer based on a quantum symmetrically private information retrieval protocol. Int .J Theor Phys. 54(3), 910–916 (2014)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 62076042, 61572086), the Key Research and Development Project of Sichuan Province (Nos. 2020YFG0307, 2018TJPT0012), the Key Research and Development Project of Chengdu (No. 2019-YF05-02028-GX), the Innovation Team of Quantum Security Communication of Sichuan Province (No. 17TD0009), the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province (No. 2016120080102643).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dong-Mei Liu or Li-Li Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, DM., Yan, LL., Xu, SH. et al. New flexible quantum private query protocol against rotation noise. Quantum Inf Process 20, 49 (2021). https://doi.org/10.1007/s11128-020-02983-0

Download citation

Keywords

  • Quantum private query
  • Logical states
  • Collective-rotation noise
  • Post-processing