Optimal economical telecloning of equatorial qubits

Abstract

We propose the optimal economical telecloning of equatorial qubits. The fidelity of each copy is optimal, and the telecloning can be realized with the success probability 100%. The efficiency of telecloning is much better than the protocol in the previous contributions (Wang and Yang in Phys Rev A 79:062315, 2009).

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature (London) 299, 802–803 (1982)

    ADS  Article  Google Scholar 

  2. 2.

    Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev Mod Phys 4, 145–195 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Βužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844–1852 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Scarani, V., Iblisdir, S., Gisin, N., et al.: Quantum cloning. Rev Mod Phys 77, 1225–1256 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153–2156 (1997)

    ADS  Article  Google Scholar 

  6. 6.

    Βužek, V., Hillery, M.: Universal optimal cloning of arbitrary quantum states: from qubits to quantum registers. Phys. Rev. Lett. 81, 5003–5006 (1998)

    ADS  Article  Google Scholar 

  7. 7.

    Cerf, N.J.: Pauli cloning of a quantum bit. Phys. Rev. Lett. 84, 4497–4500 (2000)

    ADS  Article  Google Scholar 

  8. 8.

    Werner, R.F.: Optimal cloning of pure states. Phys. Rev. A 58, 1827–1832 (1998)

    ADS  Article  Google Scholar 

  9. 9.

    Bruss, D., Cinchetti, M., D’Ariano, G.M., et al.: Phase-covariant quantum cloning. Phys. Rev. A 62, 12302 (2000)

    ADS  Article  Google Scholar 

  10. 10.

    Fan, H., Matsumoto, K., Wang, X.B., et al.: Quantum cloning machines for equatorial qubits. Phys. Rev. A 65, 012304 (2001)

    ADS  Article  Google Scholar 

  11. 11.

    Fan, H., Imai, H., Matsumoto, K., et al.: Phase-covariant quantum cloning of qudits. Phys. Rev. A 67, 022317 (2003)

    ADS  Article  Google Scholar 

  12. 12.

    D’Ariano, G.M., Macchiavello, C.: Optimal phase-covariant cloning for qubits and qutrits. Phys. Rev. A 67, 042306 (2003)

    ADS  Article  Google Scholar 

  13. 13.

    Navez, P., Cerf, N.J.: Cloning a real d-dimensional quantum state on the edge of the no-signaling condition. Phys. Rev. A 68, 032313 (2003)

    ADS  Article  Google Scholar 

  14. 14.

    Zhang, W.H., Wu, T., Ye, L., et al.: Optimal real state cloning in d dimensions. Phys. Rev. A 75, 044303 (2007)

    ADS  Article  Google Scholar 

  15. 15.

    Zhang, W.H., Ye, L.: Optimal asymmetric phase-covariant and real state cloning in d dimensions. New J. Phys. 9, 318 (2007)

    Article  Google Scholar 

  16. 16.

    Ricci, M., Cerf, N.J., Filip, R., et al.: Separating the classical and quantum information via quantum cloning. Phys. Rev. Lett. 95, 090504 (2005)

    ADS  Article  Google Scholar 

  17. 17.

    Bruss, D., Ekert, A., Macchiavello, C.: Optimal universal quantum cloning and state estimation. Phys. Rev. Lett. 81, 2598–2601 (1998)

    ADS  Article  Google Scholar 

  18. 18.

    Macchiavello, C.: Optimal estimation of multiple phases. Phys. Rev. A 67, 062302 (2003)

    ADS  Article  Google Scholar 

  19. 19.

    Chiribella, G., D’Ariano, G.M.: Quantum information becomes classical when distributed to many users. Phys. Rev. Lett. 97, 250503 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Zhao, Z., Zhang, A.N., Zhou, X.Q., et al.: Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation. Phys. Rev. Lett. 95, 030502 (2005)

    ADS  Article  Google Scholar 

  21. 21.

    Du, J.F., Durt, T., Zou, P., et al.: Experimental quantum cloning with prior partial information. Phys. Rev. Lett. 94, 040505 (2005)

    ADS  Article  Google Scholar 

  22. 22.

    Xu, J.S., Li, C.F., Chen, L., et al.: Experimental realization of the optimal universal and phase-covariant quantum cloning machines. Phys. Rev. A 78, 032322 (2008)

    ADS  Article  Google Scholar 

  23. 23.

    Soubusta, J., Bartůšková, L., Ċernoch, A., et al.: Experimental asymmetric phase-covariant quantum cloning of polarization qubits. Phys. Rev. A 78, 052323 (2008)

    ADS  Article  Google Scholar 

  24. 24.

    Murao, M., Vedral, V.: Remote Information Concentration Using a Bound Entangled State. Phys. Rev. Lett. 86, 352–355 (2001)

    ADS  Article  Google Scholar 

  25. 25.

    Bruß, D., DiVincenzo, D.P., Ekert, A., et al.: Optimal universal and state-dependent quantum cloning. Phys. Rev. A 57, 2368–2378 (1998)

    ADS  Article  Google Scholar 

  26. 26.

    Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 895–1899 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Murao, M., Jonathan, D., Plenio, M.B., et al.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)

    ADS  Article  Google Scholar 

  28. 28.

    Murao, M., Plenio, M.B., Vedral, V.: Quantum-information distribution via entanglement. Phys. Rev. A 61, 032311 (2000)

    ADS  Article  Google Scholar 

  29. 29.

    Wang, X.W., Yang, G.J.: Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement. Phys. Rev. A 79, 062315 (2009)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of the Education Department of Anhui Province of China under Grants No. KJ2016A672

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen-Hai Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, W. Optimal economical telecloning of equatorial qubits. Quantum Inf Process 19, 219 (2020). https://doi.org/10.1007/s11128-020-02725-2

Download citation

Keywords

  • Quantum cloning
  • Universal quantum cloning
  • Phase-covariant cloning
  • Real state cloning
  • Telecloning

PACS Nos.

  • 03.67.-a
  • 03.67.HK
  • 03.65.-w