Some new entanglement-assisted quantum error-correcting MDS codes from generalized Reed–Solomon codes

Abstract

Entanglement-assisted quantum maximum distance separable (MDS) codes form a significant class of quantum codes. By using generalized Reed–Solomon (GRS) codes and extended GRS codes, we construct some new classes of q-ary entanglement-assisted quantum error-correcting MDS codes. Most of these codes are new in the sense that their parameters are not covered by the codes available in the literature.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF (4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Gottesman, D.: An introduction to quantum error-correction. Proc. Symp. Appl. Math. 68, 13–27 (2010)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2085 (2014)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Zhang, T., Ge, G.: Quantum MDS codes with large minimum distance. Des. Codes Cryptogr. 83(3), 503–517 (2017)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84(3), 463–471 (2017)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Shi, X., Yue, Q., Chang, Y.: Some quantum MDS codes with large minimum distance from generalized Reed–Solomon codes. Cryptogr. Commun. 10(6), 1165–1182 (2018)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Fang, W., Fu, F.: Two new classes of quantum MDS codes. Finite Fields Appl. 53, 85–98 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Brun, T., Devetak, I., Hsieh, M.: Correcting quantum errors with entanglement. Science 52, 436–439 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Wilde, M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)

    ADS  Article  Google Scholar 

  11. 11.

    Fan, J., Chen, H., Xu, J.: Constructions of q-ary entanglement-assisted quantum mds codes with minimum distance greater than q+1. Quantum Inf. Comput. 16, 423–434 (2016)

    MathSciNet  Google Scholar 

  12. 12.

    Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16, 303 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17, 273 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Lu, L., Ma, W., Li, R., Ma, Y., Liu, Y., Cao, H.: Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance. Finite Fields Appl. 53, 309–325 (2018)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Liu, Y., Li, R., Lv, L., Ma, Y.: Application of constacyclic codes to entanglement-assisted quantum maximum diatance separable codes. Quantum Inf. Process. 17(210), 1–19 (2018)

    ADS  Article  Google Scholar 

  16. 16.

    Lu, L., Li, R., Guo, L., Ma, Y., Liu, Y.: Entanglement-assisted quantum MDS codes from negacyclic codes. Quantum Inf. Process. 17(69), 1–23 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  17. 17.

    Koroglu, M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quantum Inf. Process. 18, 44 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Qian, J., Zhang, L.: Constructions of new entanglement-assisted quantum MDS codes and almost MDS codes. Quantum Inf. Process. 18(71), 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Sarı, M., Kolotoğlu, E.: An application of constacyclic codes to entanglement-assisted quantum MDS codes. Comput. Appl. Math. 38, 75 (2019)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Luo, G., Cao, X., Chen, X.: MDS codes with hulls of arbitrary dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2018)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Li, L., Zhu, S., Liu, L., Kai, X.: Entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes. Quantum Inf. Process. 18(5), 153 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Luo, G., Cao, X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes. Quantum Inf. Process. 18(3), 89 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    Fang, W., Fu, F., Li, L., Zhu, S.: Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs. IEEE Trans. Inf. Theory (Early Access) (2019)

  25. 25.

    Lu, L., Ma, W., Guo, L.: Two families of Entanglement-assisted quantum MDS codes from constacyclic codes. Int. J. Theor. Phys. (2020). https://doi.org/10.1007/s10773-020-04433-0

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Wang, J., Li, R., Lv, J., Song, H.: Entanglement-assisted quantum codes from cyclic codes and negacyclic codes. Quantum Inf. Process. 19, 138 (2020)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shixin Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Zhu, S. Some new entanglement-assisted quantum error-correcting MDS codes from generalized Reed–Solomon codes. Quantum Inf Process 19, 208 (2020). https://doi.org/10.1007/s11128-020-02704-7

Download citation

Keywords

  • Entanglement-assisted quantum error-correcting MDS codes
  • Generalized Reed–Solomon codes
  • Hermitian hull

Mathematics Subject Classification

  • 94B05
  • 81p70