Alternative scheme of universal optical programmable multi-qubit gates for polarization qubits

Abstract

We propose an alternative scheme for programmable quantum gates specifically designed for polarization qubits of single photons. Unlike the conventional approach based on the scheme of Reck et al., we adopt the Hilbert-space expansion technique to enable a novel feature in the design of arbitrary quantum operations. We present a scheme that independently programs each matrix element of an operator. The proposed scheme can support the realization of many kinds of quantum operations. In anticipation of advances in the current quantum photonics technology, we assume the manipulation and detection of many photon qubits and propose a theoretical scheme to achieve n-polarization-qubit optical reconfigurable quantum gates by linear optical elements.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    In quantum metrology, normally the form of the operator is available, though it is parametrized by an unknown parameter (e.g., U(x) with the unknown parameter x). In such case, one could still attempt the decomposition, even when in general this is probably impractical.

References

  1. 1.

    Akopian, N., Lindner, N.H., Poem, E., Berlatzky, Y., Avron, J., Gershoni, D., Gerardot, B.D., Petroff, P.M.: Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006)

    ADS  Article  Google Scholar 

  2. 2.

    Barenco, A., Bennett, C.H., Cleve, R., Vincenzo, D.P.D., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    ADS  Article  Google Scholar 

  3. 3.

    Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N.J., Silverstone, J.W., Shadbolt, P.J., Matsuda, N., Oguma, M., Itoh, M., Marshall, G.D., Thompson, M.G., Matthews, J.C.F., Hashimoto, T., O’Brien, J.L., Laing, A.: Universal linear optics. Science 349(6249), 711–716 (2015)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Claudon, J., Bleuse, J., Malik, N.S., Bazin, M., Jaffrennou, P., Gregersen, N., Sauvan, C., Lalanne, P., Gérard, J.-M.: A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Dousse, A., Suffczyński, J., Beveratos, A., Krebs, O., Lemaître, A., Sagnes, I., Bloch, J., Voisin, P., Senellart, P.: Ultrabright source of entangled photon pairs. Nature 466, 217 (2010)

    ADS  Article  Google Scholar 

  7. 7.

    Geller, M.R., Martinis, J.M., Sornborger, A.T., Stancil, P.C., Pritchett, E.J., You, H., Galiautdinov, A.: Universal quantum simulation with prethreshold superconducting qubits: single-excitation subspace method. Phys. Rev. A 91, 062309 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    Hamel, D.R., Shalm, L.K., Hübel, H., Miller, A.J., Marsili, F., Verma, V.B., Mirin, R.P., Nam, S.W., Resch, K.J., Jennewein, T.: Direct generation of three-photon polarization entanglement. Nat. Photonics 8(10), 801–807 (2014)

    ADS  Article  Google Scholar 

  9. 9.

    Kane, B.: A silicon-based nuclear spin quantum computer. Nature 393, 133 (1998)

    ADS  Article  Google Scholar 

  10. 10.

    Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenkovi, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust and high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    Matsuda, N., Le Jeannic, H., Fukuda, H., Tsuchizawa, T., Munro, W.J., Shimizu, K., Yamada, K., Tokura, Y., Takesue, H.: A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2, 817 (2012)

    Article  Google Scholar 

  12. 12.

    Miller, D.A.B.: Self-configuring universal linear optical component [invited]. Photonics Res. 1(1), 1–15 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Müller, M., Vural, H., Schneider, C., Rastelli, A., Schmidt, O.G., Höfling, S., Michler, P.: Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys. Rev. Lett. 118, 257402 (2017)

    ADS  Article  Google Scholar 

  15. 15.

    O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled- NOT gate. Nature 426(6964), 264–267 (2003)

    ADS  Article  Google Scholar 

  16. 16.

    Peters, N., Altepeter, J., Jeffrey, E., Branning, D., Kwiat, P.: Precise creation, characterization, and manipulation of single optical qubits. Quantum Inf. Comput. 3(7), 503–517 (2003)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Politi, A., Cryan, M.J., Rarity, J.G., Yu, S., O’Brien, J.L.: Silica-on-silicon waveguide quantum circuits. Science 320, 646 (2008)

    ADS  Article  Google Scholar 

  18. 18.

    Qiang, X., Zhou, X., Wang, J., Wilkes, C.M., Loke, T., O’Gara, S., Kling, L., Marshall, G.D., Santagati, R., Ralph, T.C., Wang, J.B., O’Brien, J.L., Thompson, M.G., Matthews, J.C.F.: Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 12(9), 534–539 (2018)

    ADS  Article  Google Scholar 

  19. 19.

    Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)

    ADS  Article  Google Scholar 

  20. 20.

    Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003)

    ADS  Article  Google Scholar 

  21. 21.

    Stevenson, R.M., Hudson, A.J., Young, R.J., Atkinson, P., Cooper, K., Ritchie, D.A., Shields, A.J.: Biphoton interference with a quantum dot entangled light source. Opt. Express 15(10), 6507–6512 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    Wang, J., Paesani, S., Ding, Y., Santagati, R., Skrzypczyk, P., Salavrakos, A., Tura, J., Augusiak, R., Mančinska, L., Bacco, D., Bonneau, D., Silverstone, J.W., Gong, Q., Acín, A., Rottwitt, K., Oxenløwe, L.K., O’Brien, J.L., Laing, A., Thompson, M.G.: Multidimensional quantum entanglement with large-scale integrated optics. Science 360(6386), 285–291 (2018)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Zhou, X.-Q., Kalasuwan, P., Ralph, T.C., O’Brien, J.L.: Calculating unknown eigenvalues with a quantum algorithm. Nat. Photonics 7, 223–228 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    Zhou, X.-Q., Ralph, T.C., Kalasuwan, P., Zhang, A., Peruzzo, M., Lanyon, B.P., O’Brien, J.L.: Adding control to arbitrary unknown quantum operations. Nat. Commun. 2(413), 2011 (2011)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Thomas D. Coyne and Mr. Kittisak Thowsombat for their kind assistance in editing the English, Assist. Prof. Dr. Kwan Arayathanitkul and Assist. Prof. Dr. Worasak Sukkabot for helpful discussions. Grant No. 035/2557 from the Development and Promotion of Science and Technology Talents project (DPST) scholarship, research fund for DPST graduate with first placement and Grant No. ThEP-60-PHY-PSU4 by the Thailand Center of Excellence in Physics are acknowledged. Moreover, this project is under U.Reka Program sponsored by The Siam Commercial Bank Public Company Limited and managed by Digital Ventures Co., Ltd.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Kalasuwan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pewkhom, P., Suwanna, S. & Kalasuwan, P. Alternative scheme of universal optical programmable multi-qubit gates for polarization qubits. Quantum Inf Process 19, 209 (2020). https://doi.org/10.1007/s11128-020-02699-1

Download citation

Keywords

  • Programmable gates
  • Qubit processing
  • Universal linear optics