Two-copy quantum teleportation based on GHZ measurement

Abstract

We investigate quantum teleportation in the two-copy setting based on GHZ measurement and propose the detailed protocol. The output state after the teleportation is analyzed, and the protocol is proved to be trace preserving. The general expression of the optimal teleportation fidelity is derived. The optimal teleportation fidelity is shown to be a linear function of two-copy fully entangled fraction, which is invariant under local unitary transformations. At last, we show two-copy teleportation based on GHZ measurement can be better than one-copy teleportation by an explicit example, which is amenable to demonstration in experiments. Our study is significant for improving the fidelity of teleportation for some limited resource which cannot be significantly distilled. Moreover, it can inspire us to find many other more efficient protocols for teleportation.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. 2.

    Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    D’Ariano, G.M., Lo Presti, P., Sacchi, M.F.: Bell measurement and observables. Phys. Lett. A 272, 32 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Bowen, G., Bose, S.: Teleportation as a Depolarizing Quantum Channel, Relative Entropy, and Classical Capacity. Phys. Rev. Lett. 87, 267901 (2001)

    ADS  Article  Google Scholar 

  5. 5.

    Albeverio, S., Fei, S.M., Yang, W.L.: Teleportation with an Arbitrary Mixed Resource as a Trace-Preserving Quantum Channel. Commun. Theor. Phys. 38, 301–304 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Cavalcanti, D., Skrzypczyk, P., Supic, Ivan: All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017)

    ADS  Article  Google Scholar 

  7. 7.

    Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107, 270501 (2011)

    Article  Google Scholar 

  8. 8.

    Zhao, M.J., Fei, S.M., Li-Jost, X.: Complete entanglement witness for quantum teleportation. Phys. Rev. A 85, 054301 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    Cavalcanti, D., Acin, A., Brunner, N., Vertesi, T.: All quantum states useful for teleportation are nonlocal resources. Phys. Rev. A 87, 042104 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    Vertesi, T., Brunner, N.: Disproving the Peres conjecture: Bell nonlocality from bipartite bound entanglement. Nat. Commun. 5, 5297 (2014)

    ADS  Article  Google Scholar 

  11. 11.

    Albeverio, S., Fei, S.M., Yang, W.L.: Optimal teleportation based on bell measurement. Phys. Rev. A 66, 012301 (2002)

    ADS  Article  Google Scholar 

  12. 12.

    Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Alber, G., et al.: Quantum Information: An Introduction to Basic Concepts and Experiments. Springer Tracts in Modern Physics. Springer, Berlin (2001)

    Google Scholar 

  14. 14.

    Gu, R.J., Li, M., Fei, S.M., Li-Jost, X.: On estimation of fully entangled fraction. Commun. Theor. Phys. 53, 265 (2010)

    ADS  Article  Google Scholar 

  15. 15.

    Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A.: The mother of all protocols: restructuring quantum information’s family tree. Proc. R. Soc. A 465(2108), 2537–2563 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Bennett, C.H., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    ADS  Article  Google Scholar 

  17. 17.

    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    ADS  Article  Google Scholar 

  18. 18.

    Horodecki, M., Horodecki, P., Horodecki, R.: Inseparable two Spin-1/2 density matrices can be distilled to a singlet form. Phys. Rev. Lett. 78, 574 (1997)

    ADS  Article  Google Scholar 

  19. 19.

    Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a bound entanglement in nature? Phys. Rev. Lett. 80, 5239 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev, Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Quan, Q., Zhao, M.J., Fei, S.M., Fan, H., Yang, W.L., Long, G.L.: Two-copy quantum teleportation. Sci. Rep. 8, 13960 (2018)

    ADS  Article  Google Scholar 

  24. 24.

    Werner, R.F.: All teleportation and dense coding schemes. J. Phys. A Math. Gen. 34, 7081 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and quantum communication. eprint quant-ph/0109124 (2001)

  26. 26.

    Grondalski, J., Etlinger, D.M., James, D.F.V.: The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A 300, 573 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Zhao, M.J., Li, Z.G., Fei, S.M., Wang, Z.X.: A note on fully entangled fraction. J. Phys. A 43, 275203 (2010)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Li, M., Fei, S.M., Wang, Z.X.: Upper bound of the fully entangled fraction. Phys. Rev. A 78, 032332 (2008)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank for the supports by National Key Research and development program of China (2017YFA0303700). Q. Q. acknowledges financial supports from NSFC (Grant No. 11704217). M. J. Zhao acknowledges financial supports from NSFC (Grant No. 11401032), the China Scholarship Council (Grant No. 201808110022), and Qin Xin Talents Cultivation Program, Beijing Information Science and Technology University, Key Project of Beijing Municipal Commission of Education (KZ201810028042). G.-L.L. acknowledges support from the Center of Atomic Molecular Nanosciences, Tsinghua University, and Beijing Advanced Innovation Center for Future Chip (ICFC). T.-J.W. acknowledges the Open Research Fund Program of State Key Laboratory of Low-Dimensional Quantum Physics (KF201610).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Quan Quan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quan, Q., Zhao, M., Fei, S. et al. Two-copy quantum teleportation based on GHZ measurement. Quantum Inf Process 19, 205 (2020). https://doi.org/10.1007/s11128-020-02696-4

Download citation

Keywords

  • Quantum teleportation
  • Entanglement
  • Fidelity
  • Fully entangled fraction