Tightening the entropic uncertainty relations for multiple measurements and applying it to quantum coherence

Abstract

The uncertainty principle sets limit on our ability to predict the values of two incompatible observables measured on a quantum particle simultaneously. This principle can be stated in various forms. In quantum information theory, it is expressed in terms of the entropic measures. Uncertainty bound can be altered by considering a particle as a quantum memory correlating with the primary particle. In this work, a method is provided for converting the entropic uncertainty relation in the absence of quantum memory to that in its presence. It is shown that the lower bounds obtained through the method are tighter than those having been achieved so far. The method is also used to obtain the uncertainty relations for multiple measurements in the presence of quantum memory. Also for a given state, the lower bounds on the sum of the relative entropies of unilateral coherences are provided using the uncertainty relations in the presence of quantum memory, and it is shown which one is tighter.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)

    ADS  MATH  Google Scholar 

  2. 2.

    Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    ADS  Google Scholar 

  3. 3.

    Schrödinger, E.: About Heisenberg uncertainty relation. Proc. Pruss. Acad. Sci. XIX, 296 (1930)

    Google Scholar 

  4. 4.

    Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)

    ADS  MathSciNet  Google Scholar 

  5. 5.

    Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)

    ADS  MathSciNet  Google Scholar 

  6. 6.

    Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)

    ADS  MathSciNet  Google Scholar 

  7. 7.

    Koashi, M.: Simple security proof of quantum key distribution based on complementarity. New J. Phys. 11, 045018 (2009)

    ADS  MathSciNet  Google Scholar 

  8. 8.

    Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)

    Google Scholar 

  9. 9.

    Vallone, G., Marangon, D.G., Tomasin, M., Villoresi, P.: Quantum randomness certified by the uncertainty principle. Phys. Rev. A 90, 052327 (2014)

    ADS  Google Scholar 

  10. 10.

    Cao, Z., Zhou, H., Yuan, X., Ma, X.: Source-independent quantum random number generation. Phys. Rev. X 6, 011020 (2016)

    Google Scholar 

  11. 11.

    Berta, M., Coles, P.J., Wehner, S.: Entanglement-assisted guessing of complementary measurement outcomes. Phys. Rev. A 90, 062127 (2014)

    ADS  Google Scholar 

  12. 12.

    Walborn, S.P., Salles, A., Gomes, R.M., Toscano, F., Souto Ribeiro, P.H.: Revealing hidden Einstein-Podolsky-Rosen nonlocality. Phys. Rev. Lett. 106, 130402 (2011)

    ADS  Google Scholar 

  13. 13.

    Schneeloch, J., Broadbent, C.J., Walborn, S.P., Cavalcanti, E.G., Howell, J.C.: Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A 87, 062103 (2013)

    ADS  Google Scholar 

  14. 14.

    Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    ADS  Google Scholar 

  15. 15.

    Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017)

    ADS  MathSciNet  Google Scholar 

  16. 16.

    Bialynicki-Birula, I.: Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 74, 052101 (2006)

    ADS  MathSciNet  Google Scholar 

  17. 17.

    Wehner, S., Winter, A.: Entropic uncertainty relations—a survey. New J. Phys. 12, 025009 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  18. 18.

    Pati, A.K., Wilde, M.M., Usha Devi, A.R., Rajagopal, A.K., Sudha, : Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86, 042105 (2012)

    ADS  Google Scholar 

  19. 19.

    Ballester, M.A., Wehner, S.: Entropic uncertainty relations and locking: tight bounds for mutually unbiased bases. Phys. Rev. A 75, 022319 (2007)

    ADS  Google Scholar 

  20. 20.

    de Vicente, J.I., Sánchez-Ruiz, J.: Improved bounds on entropic uncertainty relations. Phys. Rev. A 77, 042110 (2008)

    ADS  Google Scholar 

  21. 21.

    Wu, S., Yu, S., Molmer, K.: Entropic uncertainty relation for mutually unbiased bases. Phys. Rev. A 79, 022104 (2009)

    ADS  MathSciNet  Google Scholar 

  22. 22.

    Rudnicki, L., Walborn, S.P., Toscano, F.: Optimal uncertainty relations for extremely coarse-grained measurements. Phys. Rev. A 85, 042115 (2012)

    ADS  Google Scholar 

  23. 23.

    Pramanik, T., Chowdhury, P., Majumdar, A.S.: Fine-grained lower limit of entropic uncertainty in the presence of quantum memory. Phys. Rev. Lett. 110, 020402 (2013)

    ADS  Google Scholar 

  24. 24.

    Maccone, L., Pati, A.K.: Stronger uncertainty relations for all incompatible observables. Phys. Rev. Lett. 113, 260401 (2014)

    ADS  Google Scholar 

  25. 25.

    Coles, P.J., Piani, M.: Improved entropic uncertainty relations and information exclusion relations. Phys. Rev. A 89, 022112 (2014)

    ADS  Google Scholar 

  26. 26.

    Adabi, F., Salimi, S., Haseli, S.: Tightening the entropic uncertainty bound in the presence of quantum memory. Phys. Rev. A 93, 062123 (2016)

    ADS  Google Scholar 

  27. 27.

    Adabi, F., Haseli, S., Salimi, S.: Reducing the entropic uncertainty lower bound in the presence of quantum memory via LOCC. EPL 115, 60004 (2016)

    ADS  Google Scholar 

  28. 28.

    Zozor, S., Bosyk, G.M., Portesi, M.: General entropy-like uncertainty relations in finite dimensions. J. Phys. A 47, 495302 (2014)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Rudnicki, L., Puchala, Z., Życzkowski, K.: Strong majorization entropic uncertainty relations. Phys. Rev. A 89, 052115 (2014)

    ADS  MATH  Google Scholar 

  30. 30.

    Liu, S., Mu, L.-Z., Fan, H.: Entropic uncertainty relations for multiple measurements. Phys. Rev. A 91, 042133 (2015)

    ADS  Google Scholar 

  31. 31.

    Zhang, J., Zhang, Y., Yu, C.-S.: Entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. Sci. Rep. 5, 11701 (2015)

    ADS  Google Scholar 

  32. 32.

    Xiao, Y., Jing, N., Fei, S.-M., Li, T., Li-Jost, X., Ma, T., Wang, Z.-X.: Strong entropic uncertainty relations for multiple measurements. Phys. Rev. A 93, 042125 (2016)

    ADS  Google Scholar 

  33. 33.

    Korzekwa, K., Lostaglio, M., Jennings, D., Rudolph, T.: Quantum and classical entropic uncertainty relations. Phys. Rev. A 89, 042122 (2014)

    ADS  Google Scholar 

  34. 34.

    Rudnicki, L.: Majorization approach to entropic uncertainty relations for coarse-grained observables. Phys. Rev. A 91, 032123 (2015)

    ADS  Google Scholar 

  35. 35.

    Pramanik, T., Mal, S., Majumdar, A.S.: Lower bound of quantum uncertainty from extractable classical information. Quantum Inf. Process. 15, 981 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  36. 36.

    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  37. 37.

    Yuan, X., Zhao, Q., Girolami, D., Ma, X.: Interplay between local quantum randomness and non-local information access. arXiv:1605.07818 (2016)

  38. 38.

    Yuan, X., Bai, G., Peng, T., Ma, X.: Quantum uncertainty relation using coherence. Phys. Rev. A 96, 032313 (2017)

    ADS  MathSciNet  Google Scholar 

  39. 39.

    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    ADS  Google Scholar 

  40. 40.

    Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    ADS  MathSciNet  Google Scholar 

  41. 41.

    Ma, T., Zhao, M.-J., Zhang, H.-J., Fei, S.-M., Long, G.-L.: Accessible coherence and coherence distribution. Phys. Rev. A 95, 042328 (2017)

    ADS  Google Scholar 

  42. 42.

    Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    ADS  Google Scholar 

  43. 43.

    Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)

    ADS  Google Scholar 

  44. 44.

    Zhang, J., Zhang, Y., Yu, C.-S.: The measurement-disturbance relation and the disturbance trade-off relation in terms of relative entropy. Int. J. Theor. Phys. 55, 3943 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Salimi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dolatkhah, H., Haseli, S., Salimi, S. et al. Tightening the entropic uncertainty relations for multiple measurements and applying it to quantum coherence. Quantum Inf Process 18, 13 (2019). https://doi.org/10.1007/s11128-018-2125-1

Download citation

Keywords

  • Entropic uncertainty relations
  • Quantum coherence
  • Quantum memory
  • Multiple measurements