Skip to main content
Log in

Topological quantum phase transitions in the 2-D Kitaev honeycomb model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the topological quantum phase transition in the 2-D Kitaev honeycomb model by making use of the square root of the quantum Jensen–Shannon divergence and find that the square root of the quantum Jensen–Shannon divergence exhibits singular behaviors at the critical point of quantum phase transition. The scaling behaviors of the square root of the quantum Jensen–Shannon divergence are also examined from the first-order derivatives, and we demonstrate that the square root of the quantum Jensen–Shannon divergence obeys universal finite-size scaling laws. Furthermore, we explore the performance of quantum discord and the relative entropy coherence of the system. It is shown that quantum discord and relative entropy coherence display similar critical behaviors, and the square root of the quantum Jensen–Shannon divergence and quantum discord can serve as good indicators for quantum phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416(6881), 608–610 (2002)

    Article  ADS  Google Scholar 

  2. Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93(25), 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  3. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80(2), 517–576 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Gu, S.J., Lin, H.Q., Li, Y.Q.: Entanglement, quantum phase transition, and scaling in the \(\rm XXZ\) chain. Phys. Rev. A 68, 042330 (2003)

    Article  ADS  Google Scholar 

  7. Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005)

    Article  ADS  Google Scholar 

  8. Luo, D.W., Xu, J.B.: Quantum phase transition by employing trace distance along with the density matrix renormalization group. Ann. Phys. 354, 298–305 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chen, J.J., Cui, J., Zhang, Y.R., Fan, H.: Coherence susceptibility as a probe of quantum phase transitions. Phys. Rev. A 94, 022112 (2016)

    Article  ADS  Google Scholar 

  10. Majtey, A.P., Lamberti, P.W., Prato, D.P.: Jensen–Shannon divergence as a measure of distinguishability between mixed quantum states. Phys. Rev. A 72, 052310 (2005)

    Article  ADS  Google Scholar 

  11. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991). https://doi.org/10.1109/18.61115

    Article  MathSciNet  MATH  Google Scholar 

  12. Radhakrishnan, C., Ermakov, I., Byrnes, T.: Quantum coherence of planar spin models with Dzyaloshinsky–Moriya interaction. Phys. Rev. A 96, 012341 (2017)

    Article  ADS  Google Scholar 

  13. Lamberti, P.W., Majtey, A.P., Borras, A., Casas, M., Plastino, A.: Metric character of the quantum Jensen–Shannon divergence. Phys. Rev. A 77, 052311 (2008)

    Article  ADS  Google Scholar 

  14. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  Google Scholar 

  15. Sachdev, S.: Quantum phase transitions. In: Handbook of Magnetism and Advanced Magnetic Materials (2007). https://doi.org/10.1002/9780470022184.hmm108

  16. Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Mančal, T., Cheng, Y.C., Blankenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446(7137), 782–786 (2007)

    Article  ADS  Google Scholar 

  17. Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463(7281), 644–647 (2010)

    Article  ADS  Google Scholar 

  18. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  19. Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  20. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2–111 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhao, J.H., Zhou, H.Q.: Singularities in ground-state fidelity and quantum phase transitions for the Kitaev model. Phys. Rev. B 80(1), 014403 (2009)

    Article  ADS  Google Scholar 

  22. Yang, S., Gu, S.J., Sun, C.P., Lin, H.Q.: Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model. Phys. Rev. A 78(1), 012304 (2008)

    Article  ADS  Google Scholar 

  23. Feng, X.Y., Zhang, G.M., Xiang, T.: Topological characterization of quantum phase transitions in a spin-1/2 model. Phys. Rev. Lett. 98(8), 087204 (2007)

    Article  ADS  Google Scholar 

  24. Lee, D.H., Zhang, G.M., Xiang, T.: Edge solitons of topological insulators and fractionalized quasiparticles in two dimensions. Phys. Rev. Lett. 99(19), 196805 (2007)

    Article  ADS  Google Scholar 

  25. Schmidt, K.P., Dusuel, S., Vidal, J.: Emergent fermions and anyons in the Kitaev model. Phys. Rev. Lett. 100(5), 057208 (2008)

    Article  ADS  Google Scholar 

  26. Vidal, J., Schmidt, K.P., Dusuel, S.: Perturbative approach to an exactly solved problem: Kitaev honeycomb model. Phys. Rev. B 78(24), 245121 (2008)

    Article  ADS  Google Scholar 

  27. Duan, L.M., Demler, E., Lukin, M.D.: Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91(9), 090402 (2003)

    Article  ADS  Google Scholar 

  28. André, A., DeMille, D., Doyle, J.M., Lukin, M.D., Maxwell, S.E., Rabl, P., Schoelkopf, R.J., Zoller, P.: A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys. 2(9), 636 (2006)

    Article  Google Scholar 

  29. Chen, H.D., Nussinov, Z.: Exact results of the Kitaev model on a hexagonal lattice: spin states, string and brane correlators, and anyonic excitations. J. Phys. A Math. Theor. 41(7), 075001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. Zhao, J.H., Zhou, H.Q.: Singularities in ground-state fidelity and quantum phase transitions for the Kitaev model. Phys. Rev. B 80, 014403 (2009)

    Article  ADS  Google Scholar 

  31. Hofmann, M., Osterloh, A., Gühne, O.: Scaling of genuine multiparticle entanglement close to a quantum phase transition. Phys. Rev. B 89(13), 134101 (2014)

    Article  ADS  Google Scholar 

  32. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16(3), 407–466 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  33. Wang, C.Z., Li, C.X., Nie, L.Y., Li, J.F.: Classical correlation and quantum discord mediated by cavity in two coupled qubits. J. Phys. B At. Mol. Opt. Phys. 44(1), 015503 (2010)

    Article  ADS  Google Scholar 

  34. Baumgratz, T., Cramer, M., Plenio, M.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  35. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114(21), 210401 (2015)

    Article  ADS  Google Scholar 

  36. Li, S.P., Sun, Z.H.: Local and intrinsic quantum coherence in critical systems. Phys. Rev. A 98, 022317 (2018)

    Article  ADS  Google Scholar 

  37. Cui, J., Cao, J.P., Fan, H.: Quantum-information approach to the quantum phase transition in the Kitaev honeycomb model. Phys. Rev. A 82, 022319 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11274274) and the Fundamental Research Funds for the Central Universities (Grant Nos. 2017FZA3005 and 2016XZZX002-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Bo Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhang, GQ., Cheng, JQ. et al. Topological quantum phase transitions in the 2-D Kitaev honeycomb model. Quantum Inf Process 18, 8 (2019). https://doi.org/10.1007/s11128-018-2115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2115-3

Keywords

Navigation