Skip to main content
Log in

Decoy-state reference-frame-independent quantum key distribution with the single-photon-added coherent source

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Reference-frame-independent quantum key distribution (RFI-QKD) can generate secure keys even when the reference frames drift slowly. Here, we propose to realize RFI-QKD with the single-photon-added coherent source (SPACS). Simulation results show that compared with the weak coherent state and the heralded single-photon source, SPACS can remarkably improve the key generation rate and transmission distance of RFI-QKD. Moreover, our results show the significance of optimized parameters. When taking statistical fluctuations into consideration, RFI-QKD with SPACS can still achieve very good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. IEEE, New York, pp. 175–179 (1984)

  2. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998)

    Article  ADS  Google Scholar 

  3. Lo, H.-K., Chau, H.-F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005)

    Article  MathSciNet  Google Scholar 

  4. Zhao, Y., Qi, B., Ma, X.-F., Lo, H.-K., Qian, L.: Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006)

    Article  ADS  Google Scholar 

  5. Peng, C.-Z., Zhang, J., Yang, D., Gao, W.-B., Ma, H.-X., Yin, H., Pan, J.-W.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007)

    Article  ADS  Google Scholar 

  6. Yuan, Z.-L., Sharpe, A.W., Shields, A.J.: Unconditionally secure one-way quantum key distribution using decoy pulses. Appl. Phys. Lett. 90, 011118 (2007)

    Article  ADS  Google Scholar 

  7. Wang, Q., Wang, X.-B., Guo, G.-C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75, 012312 (2007)

    Article  ADS  Google Scholar 

  8. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, J.G., Zeilinger, A., Weinfurter, H.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Article  ADS  Google Scholar 

  9. Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)

    Article  ADS  Google Scholar 

  10. Wang, S., Zhang, S.-L., Li, H.-W., Yin, Z.-Q., Zhao, Y.-B., Chen, W., Han, Z.-F., Guo, G.-C.: Decoy-state theory for the heralded single-photon source with intensity fluctuations. Phys. Rev. A 79, 062309 (2009)

    Article  ADS  Google Scholar 

  11. Wang, Q., Wang, X.-B.: Simulating of the measurement-device-independent quantum key distribution with phase randomized general sources. Sci. Rep. 4, 04612 (2014)

    Article  ADS  Google Scholar 

  12. Wang, Q., Zhang, C.-H., Wang, X.-B.: Scheme for realizing passive quantum key distribution with heralded single-photon sources. Phys. Rev. A 93, 032312 (2016)

    Article  ADS  Google Scholar 

  13. Laing, A., Scarani, V., Rarity, J.G., O’Brien, J.-L.: Reference-frame-independent quantum key distribution. Phys. Rev. A 82, 012304 (2010)

    Article  ADS  Google Scholar 

  14. Wabnig, J., Bitauld, D., Li, H.W., Laing, A., O’Brien, J.L., Niskanen, A.O.: Demonstration of free-space reference frame independent quantum key distribution. New J. Phys. 15, 073001 (2013)

    Article  ADS  Google Scholar 

  15. Zhang, P., Aungskunsiri, K., Martín-López, E., Wabnig, J., Lobino, M., Nock, R.W., Munns, J., Bonneau, D., Jiang, P., Li, H.W., Laing, A., Rarity, J.G., Niskanen, A.O., Thompson, M.G., O’Brien, J.L.: Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client. Phys. Rev. Lett. 112, 130501 (2014)

    Article  ADS  Google Scholar 

  16. Yin, Z.-Q., Wang, S., Chen, W., Li, H.-W., Guo, G.-C., Han, Z.-F.: Reference-free-independent quantum key distribution immune to detector side channel attacks. Quantum Inf. Process 13, 1237–1244 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wang, C., Sun, S.-H., Ma, X.-C., Tang, G.-Z., Liang, L.-M.: Reference-frame-independent quantum key distribution with source flaws. Phys. Rev. A 92, 042319 (2015)

    Article  ADS  Google Scholar 

  18. Zhang, C.-M., Zhu, J.-R., Wang, Q.: Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution. Phys. Rev. A 95, 032309 (2017)

    Article  ADS  Google Scholar 

  19. Zhang, C.-M., Zhu, J.-R., Wang, Q.: Decoy-state reference-frame-independent measurement-device-independent quantum key distribution with biased bases. J. Light. Technol. 35, 4574–4578 (2017)

    Article  ADS  Google Scholar 

  20. Zhu, J.-R., Zhang, C.-M., Wang, Q.: Biased decoy-state reference-frame-independent quantum key distribution. Eur. Phys. J. D 79, 319 (2017)

    Article  ADS  Google Scholar 

  21. Zhang, C.-M., Zhu, J.-R., Wang, Q.: Practical reference-frame-independent quantum key distribution systems against the worst relative rotation of reference frames. J. Phys. Commun. 2, 055029 (2018)

    Article  Google Scholar 

  22. Liang, W.-Y., Wang, S., Li, H.-W., Yin, Z.-Q., Chen, W., Yao, Y., Han, Z.-F.: Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding. Sci. Rep. 4, 3617 (2014)

    Article  Google Scholar 

  23. Wang, C., Song, X.-T., Yin, Z.-Q., Wang, S., Chen, W., Zhang, C.-M., Guo, G.-C., Han, Z.-F.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)

    Article  ADS  Google Scholar 

  24. Wang, C., Yin, Z.-Q., Wang, S., Chen, W., Guo, G.-C., Han, Z.-F.: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4, 1016–1023 (2017)

    Article  Google Scholar 

  25. Liu, K., Li, J., Zhu, J.-R., Zhang, C.-M., Wang, Q.: Decoy-state reference-frame-independent quantum key distribution with both source errors and statistical fluctuations. Chin. Phys. B 26, 120302 (2017)

    Article  ADS  Google Scholar 

  26. Li, J.-J., Wang, Y., Li, H.-W., Peng, P., Zhou, C., Jiang, M.-S., Ma, H.-X., Feng, L.-X., Bao, W.-S.: Passive decoy-state reference-frame-independent quantum key distribution with heralded single-photon source. Chin. Phys. Lett. 34, 120301 (2017)

    Article  ADS  Google Scholar 

  27. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  28. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  29. Lo, H.-K., Ma, X.-F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  30. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492 (1991)

    Article  ADS  Google Scholar 

  31. Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660 (2004)

    Article  ADS  Google Scholar 

  32. Zavatta, A., Viciani, S., Bellini, M.: Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission. Phys. Rev. A 72, 023820 (2005)

    Article  ADS  Google Scholar 

  33. Wang, D., Li, M., Zhu, F., Yin, Z.-Q., Chen, W., Han, Z.-F., Guo, G.-C., Wang, Q.: Quantum key distribution with the single-photon-added coherent source. Phys. Rev. A 90, 062315 (2014)

    Article  ADS  Google Scholar 

  34. Wang, D., Li, M., Guo, G.-C., Wang, Q.: An improved scheme on decoy-state method of measurement-device-independent quantum key distribution. Sci. Rep. 5, 15130 (2015)

    Article  ADS  Google Scholar 

  35. Wang, X.-B., Peng, C.-Z., Zhang, J., Yang, L., Pan, J.-W.: General theory of decoy-state quantum cryptography with source errors. Phys. Rev. A 77, 042311 (2008)

    Article  ADS  Google Scholar 

  36. Wang, X.-B., Yang, L., Peng, C.-Z., Pan, J.-W.: Decoy-state quantum key distribution with both source errors and statistical fluctuations. New J. Phys. 11, 075006 (2009)

    Article  ADS  Google Scholar 

  37. Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  38. Ma, X., Fung, C.-H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 052305 (2012)

    Article  ADS  Google Scholar 

  39. Xu, F., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Key Research and Development Program of China through Grant Nos. 2018YFA0306400, 2017YFA0304100, the National Natural Science Foundation of China through Grants Nos. 61475197, 61590932, 11774180, 61705110, the Natural Science Foundation of Jiangsu Province through Grant No. BK20170902, the Natural Science Foundation of the Jiangsu Higher Education Institutions through Grant Nos. 15KJA120002, 17KJB140016, the Outstanding Youth Project of Jiangsu Province through Grant No. BK20150039, the Postgraduate Research & Practice Innovation Program of Jiangsu Province No. KYCX18_0906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, JR., Wang, CY., Liu, K. et al. Decoy-state reference-frame-independent quantum key distribution with the single-photon-added coherent source. Quantum Inf Process 17, 294 (2018). https://doi.org/10.1007/s11128-018-2063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2063-y

Keywords

Navigation