Enhancing the absorption and energy transfer process via quantum entanglement

Article
  • 12 Downloads

Abstract

The quantum network model is widely used to describe the dynamics of excitation energy transfer in photosynthesis complexes. Different from the previous schemes, we explore a specific network model, which includes both light-harvesting and energy transfer process. Here, we define a rescaled measure to manifest the energy transfer efficiency from external driving to the sink, and the external driving fields are used to simulate the energy absorption process. To study the role of initial state in the light-harvesting and energy transfer process, we assume the initial state of the donors to be two-qubit and three-qubit entangled states, respectively. In the two-qubit initial state case, we find that the initial entanglement between the donors can help to improve the absorption and energy transfer process for both the near-resonant and large-detuning cases. For the case of three-qubit initial state, we can see that the transfer efficiency will reach a larger value faster in the tripartite entanglement case compared to the bipartite entanglement case.

Keywords

Excitation energy transfer Quantum network model Quantum entanglement 

Notes

Acknowledgements

This work was supported by NSF-China under Grant No. 11374085, the Key Program of the Education Department of Anhui Province under Grant Nos. KJ2017A922, KJ2016A583, the Anhui Provincial Natural Science Foundation under Grant Nos.1708085MA12, 1708085MA10, the discipline top-notch talents Foundation of Anhui Provincial Universities under Grant Nos. gxbjZD2017024, gxbjZD2016078, the 136 Foundation of Hefei Normal University and the China Scholarships Council under Grant No. 201606500002.

References

  1. 1.
    Blankenship, R.E.: Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford (2002)CrossRefGoogle Scholar
  2. 2.
    Sauer, K.: Photosynthesis-the light reactions. Annu. Rev. Phys. Chem. 30, 155–178 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    van Grondelle, R., Novoderezhkin, V.I.: Energy transfer in photosynthesis: experimental insights and quantitative models. Phys. Chem. Chem. Phys. 8, 793–807 (2006)CrossRefGoogle Scholar
  4. 4.
    Scholes, G.D., Fleming, G.R., Olaya-Castro, A., van Grondelle, R.: Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011)CrossRefGoogle Scholar
  5. 5.
    Scully, M.O.: Using quantum coherence to reduce radiative recombination and increase efficiency. Phys. Rev. Lett 104(1–4), 207701 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Scully, M.O., Chapin, K.R., Dorfman, K.E., Kim, M.B., Svidzinsky, A.: Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. 108, 15097–15100 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Creatore, C., Parker, M.A., Emmott, S., Chin, A.W.: Efficient biologically inspired photocell enhanced by delocalized quantum states. Phys. Rev. Lett. 111(1–5), 253601 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Oh, S., Alharbi, F.H., Engel, G., Kais, S.: Delocalized quantum states enhance photocell efficiency. Phys. Chem. Chem. Phys. 17, 5743–5750 (2014)CrossRefGoogle Scholar
  9. 9.
    Ajisaka, S., Zunkovic, B., Dubi, Y.: The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium. Sci. Rep. 5(1–6), 8321 (2015)Google Scholar
  10. 10.
    Kuhn, O., Sundstrom, V., Pullerits, T.: Fluorescence depolarization dynamics in the B850 complex of purple bacteria. Chem. Phys. 275, 15–30 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Engel, G.S., et al.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Panitchayangkoon, G., et al.: Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. 107, 12766–12770 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Scholes, G.D.: Quantum-coherent electronic energy transfer: did nature think of it first? J. Phys. Chem. Lett. 1, 2–8 (2010)CrossRefGoogle Scholar
  14. 14.
    Chachisvilis, M., Kuhn, O., Pullerits, T., Sundstrom, V.: Excitons in photosynthetic purple bacteria: wavelike motion or incoherent hopping. J. Phys. Chem B 101, 7275–7283 (1997)CrossRefGoogle Scholar
  15. 15.
    Harel, E., Engel, G.S.: Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proc. Natl. Acad. Sci. 109, 706–711 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Nalbach, P., Braun, D., Thorwart, M.: Exciton transfer dynamics and quantumness of energy transfer in the Fenna–Matthews–Olson complex. Phys. Rev. E 84(1–6), 041926 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Ai, B., Zhu, S.-L.: Complex quantum network model of energy transfer in photosynthetic complexes. Phys. Rev. E 86(1–8), 061917 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Yi, X.X., Zhang, X.Y., Oh, C.H.: Effect of complex inter-site couplings on the excitation energy transfer in the FMO complex. Eur. Phys. J. D 67(1–7), 172 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Olaya-Castro, A., Lee, C.F., Olsen, F.F., Johnson, N.F.: Efficiency of energy transfer in a light-harvesting system under quantum coherence. Phys. Rev. B 78(1–7), 085115 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Kassal, I., Zhou, J.Y., Keshari, S.R.: Does coherence enhance transport in photosynthesis? J. Phys. Chem. Lett. 4, 362–367 (2013)CrossRefGoogle Scholar
  21. 21.
    Yang, S., Xu, D.Z., Song, Z., Sun, C.P.: Dimerization-assisted energy transport in light-harvesting complexes. J. Chem. Phys. 132(1–10), 234501 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Liang, X.-T.: Excitation energy transfer: study with non-Markovian dynamics. Phys. Rev. E 82(1–5), 051918 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Ishizakia, A., Fleming, G.R.: Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl. Acad. Sci. USA 106, 17255–17260 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Ghosh, P.K., Smirnov, A.Y., Nori, F.: Quantum effects in energy and charge transfer in an artificial photosynthetic complex. J. Chem. Phys. 134(1–13), 244103 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Tao, M.-J., Ai, Q., Deng, F.-G., Cheng, Y.-C.: Proposal for probing energy transfer pathway by single-molecule pump-dump experiment. Sci. Rep. 6(1–10), 27535 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Ai, Q., Yen, T.-C., Jin, B.-Y., Cheng, Y.-C.: Clustered geometries exploiting quantum coherence effects for efficient energy transfer in light harvesting. J. Phys. Chem. Lett. 4, 2577–2584 (2013)CrossRefGoogle Scholar
  27. 27.
    Irish, E.K., GOmez-Bombarelli, R., Lovett, B.W.: Vibration-assisted resonance in photosynthetic excitation-energy transfer. Phys. Rev. A 90(1–10), 012510 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    del Rey, M., Chin, A.W., Huelga, S.F., Plenio, M.B.: Exploiting structured environments for efficient energy transfer: the phonon antenna mechanism. J. Phys. Chem. Lett. 4, 903–907 (2013)CrossRefGoogle Scholar
  29. 29.
    Chen, G.-Y., Lambert, N., Li, C.-M., Chen, Y.-N., Nori, F.: Rerouting excitation transfers in the Fenna–Matthews–Olson complex. Phys. Rev. E 88(1–6), 032120 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Liao, J.-Q., Huang, J.-F., Kuang, L.-M., Sun, C.P.: Coherent excitation-energy transfer and quantum entanglement in a dimer. Phys. Rev. A 82(1–12), 052109 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Li, H., Zhang, P., Liu, Y., Li, F., Zhu, S.: Control excitation and coherent transfer in a dimer. Phys. Rev. A 87(1–7), 053831 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Asadian, A., et al.: Motional effects on the efficiency of excitation transfer. New. J. Phys. 12(1–23), 075019 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Qin, M., Shen, H.Z., Zhao, X.L., Yi, X.X.: Dynamics and quantumness of excitation energy transfer through a complex quantum network. Phys. Rev. E 90(1–13), 042140 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Marais, A., Sinayskiy, I., Petruccione, F., van Grondelle, R.: A quantum protective mechanism in photosynthesis. Sci. Rep. 5(1–8), 8720 (2015)CrossRefGoogle Scholar
  35. 35.
    Dong, H., Li, S.-W., Yi, Z., Agarwal, G.S., Scully, M.O.: Photon-blockade induced photon anti-bunching in photosynthetic antennas with cyclic structures. arXiv:1608.04364
  36. 36.
    Plenio, M.B., Huelga, S.F.: Dephasing assisted transport: quantum networks and biomolecules. New. J. Phys. 10(1–14), 113019 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Mohseni, M., Rebentrost, P., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum walks in energy transfer of photosynthetic complexes. J. Chem. Phys. 129(1–8), 174106 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Hoyer, S., Sarovar, M., Whaley, K.B.: Limits of quantum speedup in photosynthetic light harvesting. New. J. Phys. 12(1–9), 065041 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Caruso, F., Chin, A.W., Datta, A., Huelga, S.F., Plenio, M.B.: Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport. J. Chem. Phys. 131(1–16), 105106 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Chin, A.W., Datta, A., Caruso, F., Huelga, S.F., Plenio, M.B.: Noise-assisted energy transfer in quantum networks and light-harvesting complexes. New J. Phys. 12(1–16), 065002 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Cheng, Y.C., Silbey, R.J.: Coherence in the B800 ring of purple bacteria LH2. Phys. Rev. Lett. 96(1–4), 028103 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    Jang, S., Cheng, Y.C., Reichman, D.R., Eaves, J.D.: Theory of coherent resonance energy transfer. J. Chem. Phys. 129(1–4), 101104 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    Jang, S.: Theory of multichromophoric coherent resonance energy transfer: a polaronic quantum master equation approach. J. Chem. Phys 135(1–9), 034105 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Kolli, A., Nazir, A., Olaya-Castro, A.: Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation. J. Chem. Phys. 135(1–13), 154112 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Cao, J.S.: A phase-space study of Bloch–Redfield theory. J. Chem. Phys. 107, 3204–3209 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    Wu, J.L., Liu, F., Shen, Y., Cao, J.S., Silbey, R.J.: Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial-temporal correlations. New. J. Phys. 12(1–17), 105012 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Ye, J., Sun, K., Zhao, Y., Yu, Y., Lee, C.K., Cao, J.S.: Excitonic energy transfer in light-harvesting complexes in purple bacteria. J. Chem. Phys. 136(1–17), 245104 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Piilo, J., Maniscalco, S., Harkonen, K., Suominen, K.A.: Non-Markovian quantum jumps. Phys. Rev. Lett. 100(1–4), 180402 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Piilo, J., Harkonen, K., Maniscalco, S., Suominen, K.A.: Open system dynamics with non-Markovian quantum jumps. Phys. Rev. A 79(1–17), 062112 (2009)ADSCrossRefMATHGoogle Scholar
  50. 50.
    Rebentrost, P., Chakraborty, R., Aspuru-Guzik, A.: Non-Markovian quantum jumps in excitonic energy transfer. J. Chem. Phys. 131(1–9), 184102 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    Prior, J., Chin, A.W., Huelga, S.F.: Efficient Simulation of strong system-environment interactions. Phys. Rev. Lett. 105(1–4), 050404 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Tanimura, Y.: Stochastic Liouville, Langevin, Fokker–Planck, and Master Equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn. 75(1–39), 082001 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    Ishizaki, A., Fleming, G.R.: Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130(1–10), 234111 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Mancal, T., Valkunas, L.: Exciton dynamics in photosynthetic complexes: excitation by coherent and incoherent light. New. J. Phys. 12(1–19), 065044 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    Chenu, A., Maly, P., Mancal, T.: Dynamic coherence in excitonic molecular complexes under various excitation conditions. Chem. Phys. 439, 100–110 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    Dodin, A., Tscherbul, T.V., Brumer, P.: Quantum dynamics of incoherently driven V-type systems: Analytic solutions beyond the secular approximation. J. Chem. Phys. 144(1–13), 244108 (2016)ADSCrossRefGoogle Scholar
  57. 57.
    Amerongen, H.V., Valkunas, L., Grondelle, R.V.: Photosynthetic Excitons. World Scientific, Singapore (2000)CrossRefGoogle Scholar
  58. 58.
    Fassioli, F., Olaya-Castro, A.: Distribution of entanglement in light-harvesting complexes and their quantum efficiency. New. J. Phys. 12(1–15), 085006 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    Caruso, F., Montangero, S., Calarco, T., Huelga, S.F., Plenio, M.B.: Coherent optimal control of photosynthetic molecules. Phys. Rev. A 85(1–12), 042331 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Quantum Control and Quantum Information, and School of Electronic and Information EngineeringHefei Normal UniversityHefeiChina
  2. 2.Department of Electronic Communication EngineeringAnhui Xinhua UniversityHefeiChina
  3. 3.School of Physics and Material ScienceAnhui UniversityHefeiChina
  4. 4.Department of PhysicsUniversity of MichiganAnn ArborUSA

Personalised recommendations