Skip to main content
Log in

Estimation of temperature in micromaser-type systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We address the estimation of the number of photons and temperature in a micromaser-type system with Fock state and thermal fields. We analyze the behavior of the quantum Fisher information (QFI) for both fields. In particular, we show that in the Fock state field model, the QFI for non-entangled initial state of the atoms increases monotonously with time, while for entangled initial state of the atoms, it shows oscillatory behavior, leading to non-Markovian dynamics. Moreover, it is observed that the QFI, entropy of entanglement and fidelity have collapse and revival behavior. Focusing on each period that the collapses and revivals occur, we see that the optimal points of the QFI and entanglement coincide. In addition, when one of the subsystems evolved state fidelity becomes maximum, the QFI also achieves its maximum. We also address the evolved fidelity versus the initial state as a good witness of non-Markovianity. Moreover, we interestingly find that the entropy of the composite system can be used as a witness of non-Markovian evolution of the subsystems. For the thermal field model, we similarly investigate the relation among the QFI associated with the temperature, von Neumann entropy, and fidelity. In particular, it is found that at the instants when the maximum values of the QFI are achieved, the entanglement between the two-qubit system and the environment is maximized while the entanglement between the probe and its environment is minimized. Moreover, we show that the thermometry may lead to optimal estimation of practical temperatures. Besides, extending our computation to the two-qubit system, we find that using a two-qubit probe generally leads to more effective estimation than the one-qubit scenario. Finally, we show that initial state entanglement plays a key role in the advent of non-Markovianity and determination of its strength in the composite system and its subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Paris, M.G.: Quantum estimation for quantum technology. Int. J. Quant. Inf. 7, 125–137 (2009)

    Article  MATH  Google Scholar 

  2. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  3. Lu, X.-M., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82(4), 042103 (2010)

    Article  ADS  Google Scholar 

  4. Chang, L., Li, N., Luo, S., Song, H.: Optimal extraction of information from two spins. Phys. Rev. A 89(4), 042110 (2014)

    Article  ADS  Google Scholar 

  5. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87(2), 022337 (2013)

    Article  ADS  Google Scholar 

  6. Jiang, Z.: Quantum Fisher information for states in exponential form. Phys. Rev. A 89(3), 032128 (2014)

    Article  ADS  Google Scholar 

  7. Ma, J., Wang, X.: Fisher information and spin squeezing in the Lipkin–Meshkov–Glick model. Phys. Rev. A 80(1), 012318 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Sun, Z., Ma, J., Lu, X.-M., Wang, X.: Fisher information in a quantum-critical environment. Phys. Rev. A 82(2), 022306 (2010)

    Article  ADS  Google Scholar 

  9. Yao, Y., Xiao, X., Ge, L., Wang, X.-G., Sun, C.-P.: Quantum Fisher information in noninertial frames. Phys. Rev. A 89(4), 042336 (2014)

    Article  ADS  Google Scholar 

  10. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96(1), 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Berrada, K.: Non-Markovian effect on the precision of parameter estimation. Phys. Rev. A 88(3), 035806 (2013)

    Article  ADS  Google Scholar 

  12. Ma, J., Huang, Y.-X., Wang, X., Sun, C.P.: Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84(2), 022302 (2011)

    Article  ADS  Google Scholar 

  13. Rangani Jahromi, H., Amniat-Talab, M.: Geometric phase, entanglement, and quantum Fisher information near the saturation point. Ann. Phys. 355, 299–312 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Rangani Jahromi, H.: Relation between quantum probe and entanglement in n-qubit systems within Markovian and non-Markovian environments. J. Mod. Opt. 64(14), 1377–1385 (2017)

    Article  ADS  Google Scholar 

  15. Helstrom, C.: Quantum Detection and Estimation Theory. Elsevier Science, Amsterdam (1976)

    MATH  Google Scholar 

  16. Jozsa, R., Abrams, D.S., Dowling, J.P., Williams, C.P.: Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 85(9), 2010–2013 (2000)

    Article  ADS  Google Scholar 

  17. Peters, A., Chung, K.Y., Chu, S.: Measurement of gravitational acceleration by dropping atoms. Nature 400, 849 (1999)

    Article  ADS  Google Scholar 

  18. Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54(6), R4649–R4652 (1996)

    Article  ADS  Google Scholar 

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  20. Hayashi, M.: Quantum Information: An Introduction. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  22. Amniat-Talab, M., Rangani Jahromi, H.: On the entanglement and engineering phase gates without dynamical phases for a two-qubit system with Dzyaloshinski–Moriya interaction in magnetic field. Quant. Inf. Proc. 12(2), 1185–1199 (2013)

    Article  MATH  Google Scholar 

  23. Rangani Jahromi, H., Amniat-Talab, M.: Noncyclic geometric quantum computation and preservation of entanglement for a two-qubit Ising model. Quant. Inf. Proc. 14(10), 3739–3755 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Yin, Z.-Q., Li, H.-W., Chen, W., Han, Z.-F., Guo, G.-C.: Security of counterfactual quantum cryptography. Phys. Rev. A 82(4), 042335 (2010)

    Article  ADS  Google Scholar 

  26. Noh, T.-G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103(23), 230501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Morimae, T.: Strong entanglement causes low gate fidelity in inaccurate one-way quantum computation. Phys. Rev. A 81(6), 060307 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  28. Schaffry, M., Gauger, E.M., Morton, J.J.L., Fitzsimons, J., Benjamin, S.C., Lovett, B.W.: Quantum metrology with molecular ensembles. Phys. Rev. A 82(4), 042114 (2010)

    Article  ADS  Google Scholar 

  29. Demkowicz-Dobrzański, R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113(25), 250801 (2014)

    Article  ADS  Google Scholar 

  30. Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79(20), 3865–3868 (1997)

    Article  ADS  Google Scholar 

  31. Kacprowicz, M., Demkowicz-Dobrzaski, R., Wasilewski, W., Banaszek, K., Walmsley, I.A.: Experimental quantum-enhanced estimation of a lossy phase shift. Nat. Photon. 4, 357 (2010)

    Article  ADS  Google Scholar 

  32. Chaves, R., Brask, J.B., Markiewicz, M., Kolodyński, J., Acín, A.: Noisy metrology beyond the standard quantum limit. Phys. Rev. Lett. 111(12), 120401 (2013)

    Article  ADS  Google Scholar 

  33. Dinani, H.T., Berry, D.W.: Loss-resistant unambiguous phase measurement. Phys. Rev. A 90(2), 023856 (2014)

    Article  ADS  Google Scholar 

  34. Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102(10), 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. Li, N., Luo, S.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88(1), 014301 (2013)

    Article  ADS  Google Scholar 

  36. Hyllus, P., Gühne, O., Smerzi, A.: Not all pure entangled states are useful for sub-shot-noise interferometry. Phys. Rev. A 82(1), 012337 (2010)

    Article  ADS  Google Scholar 

  37. Boixo, S., Datta, A., Davis, M.J., Flammia, S.T., Shaji, A., Caves, C.M.: Quantum metrology: dynamics versus entanglement. Phys. Rev. Lett. 101(4), 040403 (2008)

    Article  ADS  Google Scholar 

  38. Tilma, T., Hamaji, S., Munro, W.J., Nemoto, K.: Entanglement is not a critical resource for quantum metrology. Phys. Rev. A 81(2), 022108 (2010)

    Article  ADS  Google Scholar 

  39. Datta, A., Shaji, A.: Quantum metrology without quantum entanglement. Mod. Phys. Lett. B 26(18), 1230010 (2012)

    Article  ADS  Google Scholar 

  40. Sahota, J., Quesada, N.: Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement. Phys. Rev. A 91(1), 013808 (2015)

    Article  ADS  Google Scholar 

  41. Kosloff, R.: Quantum thermodynamics: a dynamical viewpoint. Entropy. 15(6), 2100 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Kosloff, R., Levy, A.: Quantum heat engines and refrigerators: continuous devices. Annu. Rev. Phys. Chem. 65(1), 365–393 (2014)

    Article  ADS  Google Scholar 

  43. Armour, A.D., Blencowe, M.P., Schwab, K.C.: Entanglement and Decoherence of a Micromechanical Resonator via Coupling to a Cooper-Pair Box. Phys. Rev. Lett. 88(14), 148301 (2002)

    Article  ADS  Google Scholar 

  44. Kleckner, D., Bouwmeester, D.: Sub-kelvin optical cooling of a micromechanical resonator. Nature (London) 444, 75 (2006)

    Article  ADS  Google Scholar 

  45. Rocheleau, T., Ndukum, T., Macklin, C., Hertzberg, J.B., Clerk, A.A., Schwab, K.C.: Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2009)

    Article  ADS  Google Scholar 

  46. Brunelli, M., Olivares, S., Paris, M.G.A.: Qubit thermometry for micromechanical resonators. Phys. Rev. A 84(3), 032105 (2011)

    Article  ADS  Google Scholar 

  47. Boyd, R.W.: Nonlinear Optics. Elsevier Science, Amsterdam (2008)

    Google Scholar 

  48. Neumann, P., Jakobi, I., Dolde, F., Burk, C., Reuter, R., Waldherr, G., Honert, J., Wolf, T., Brunner, A., Shim, J.H., Suter, D., Sumiya, H., Isoya, J., Wrachtrup, J.: High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13(6), 2738–2742 (2013)

    Article  ADS  Google Scholar 

  49. Kucsko, G., Maurer, P.C., Yao, N.Y., Kubo, M., Noh, H.J., Lo, P.K., Park, H., Lukin, M.D.: Nanometre-scale thermometry in a living cell. Nature 500, 54 (2013)

    Article  ADS  Google Scholar 

  50. Toyli, D.M., de las Casas, C.F., Christle, D.J., Dobrovitski, V.V., Awschalom, D.D.: Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl. Acad. Sci. USA 110(21), 8417–8421 (2013)

    Article  ADS  Google Scholar 

  51. Brunelli, M., Olivares, S., Paternostro, M., Paris, M.G.A.: Qubit-assisted thermometry of a quantum harmonic oscillator. Phys. Rev. A 86(1), 012125 (2012)

    Article  ADS  Google Scholar 

  52. Higgins, K.D., Lovett, B.W., Gauger, E.M.: Quantum thermometry using the ac Stark shift within the Rabi model. Phys. Rev. B 88, 155409 (2013)

    Article  ADS  Google Scholar 

  53. Raitz, C., Souza, A.M., Auccaise, R., Sarthour, R.S., Oliveira, I.S.: Experimental implementation of a nonthermalizing quantum thermometer. Quant. Inf. Proc. 14(1), 37–46 (2015)

    Article  Google Scholar 

  54. Correa, L.A., Mehboudi, M., Adesso, G., Sanpera, A.: Individual quantum probes for optimal thermometry. Phys. Rev. Lett. 114(22), 220405 (2015)

    Article  ADS  Google Scholar 

  55. Guo, L.-S., Xu, B.-M., Zou, J., Shao, B.: Improved thermometry of low-temperature quantum systems by a ring-structure probe. Phys. Rev. A 92(5), 052112 (2015)

    Article  ADS  Google Scholar 

  56. Stace, T.M.: Quantum limits of thermometry. Phys. Rev. A 82(1), 011611 (2010)

    Article  ADS  Google Scholar 

  57. Jevtic, S., Newman, D., Rudolph, T., Stace, T.M.: Single-qubit thermometry. Phys. Rev. A 91(1), 012331 (2015)

    Article  ADS  Google Scholar 

  58. Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247(1), 135–173 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73(3), 565–582 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Yan, X.-Q., Meng, K.: A comparison of quantum discord and entanglement in a micromaser-type system. Int. J. Theor. Phys. 53(8), 2746–2752 (2014)

    Article  MATH  Google Scholar 

  61. Wang, J., Tian, Z., Jing, J., Fan, H.: Quantum metrology and estimation of Unruh effect. Sci. Rep. 4, 7195 (2014)

    Article  ADS  Google Scholar 

  62. Latune, C.L., Sinayskiy, I., Petruccione, F.: Quantum force estimation in arbitrary non-Markovian–Gaussian baths. Phys. Rev. A 94(5), 052115 (2016)

    Article  ADS  Google Scholar 

  63. Kish, S.P., Ralph, T.C.: Estimating spacetime parameters with a quantum probe in a lossy environment. Phys. Rev. D 93(10), 105013 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  64. Paris, M.G.A.: Quantum probes for fractional Gaussian processes. Phys. A 413, 256–265 (2014)

    Article  MathSciNet  Google Scholar 

  65. Jahromi, H.R.: Parameter estimation in plasmonic QED. Opt. Commun. 411, 119–125 (2018)

    Article  ADS  Google Scholar 

  66. Huang, C.Y., Ma, W., Wang, D., Ye, L.: How the relativistic motion affect quantum Fisher information and Bell non-locality for multipartite state. Sci. Rep. 7, 38456 (2017)

    Article  ADS  Google Scholar 

  67. Rangani Jahromi, H., Amniat-Talab, M.: Precision of estimation and entropy as witnesses of non-Markovianity in the presence of random classical noises. Ann. Phys. 360, 446–461 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  68. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245–2248 (1998)

    Article  ADS  MATH  Google Scholar 

  69. Holevo, A.S., Giovannetti, V.: Quantum channels and their entropic characteristics. Rep. Progr. Phys. 75(4), 046001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  70. Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77(9), 094001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  71. Chruściński, D., Kossakowski, A.: Markovianity criteria for quantum evolution. J. Phys. B 45(15), 154002 (2012)

    Article  ADS  Google Scholar 

  72. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Aharonov, Y., Massar, S., Popescu, S.: Measuring energy, estimating Hamiltonians, and the time-energy uncertainty relation. Phys. Rev. A 66(5), 052107 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  74. Chruściński, D., Kossakowski, A.: Witnessing non-Markovianity of quantum evolution. Eur. Phys. J. D 68(1), 7 (2014)

    Article  ADS  Google Scholar 

  75. Yan, Y.-A., Zhou, Y.: Hermitian non-Markovian stochastic master equations for quantum dissipative dynamics. Phys. Rev. A 92(2), 022121 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  76. Mazzola, L., Laine, E.M., Breuer, H.P., Maniscalco, S., Piilo, J.: Phenomenological memory-kernel master equations and time-dependent Markovian processes. Phys. Rev. A 81(6), 062120 (2010)

    Article  ADS  Google Scholar 

  77. Chruściński, D., Kossakowski, A., Rivas, Á.: Measures of non-Markovianity: divisibility versus backflow of information. Phys. Rev. A 83(5), 052128 (2011)

    Article  ADS  Google Scholar 

  78. Wilde, M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the financial support of the MSRT of Iran, Urmia University and Jahrom University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rangani Jahromi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farajollahi, B., Jafarzadeh, M., Rangani Jahromi, H. et al. Estimation of temperature in micromaser-type systems. Quantum Inf Process 17, 119 (2018). https://doi.org/10.1007/s11128-018-1887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1887-9

Keywords

Navigation