Classical versus quantum communication in XOR games

  • Marius Junge
  • Carlos Palazuelos
  • Ignacio Villanueva


We introduce an intermediate setting between quantum nonlocality and communication complexity problems. More precisely, we study the value of XOR games when Alice and Bob are allowed to use a limited amount (c bits) of one-way classical communication compared to their value when they are allowed to use the same amount of one-way quantum communication (c qubits). The key quantity here is the ratio between the quantum and classical value. We provide a universal way to obtain Bell inequality violations of general Bell functionals from XOR games for which the previous quotient is larger than 1. This allows, in particular, to find (unbounded) Bell inequality violations from communication complexity problems in the same spirit as the recent work by Buhrman et al. (PNAS 113(12):3191–3196, 2016). We also provide an example of a XOR game for which the previous quotient is optimal (up to a logarithmic factor) in terms of the amount of information c. Interestingly, this game has only polynomially many inputs per player. For the related problem of separating the classical versus quantum communication complexity of a function, the known examples attaining exponential separation require exponentially many inputs per party.


Quantum information Quantum communication XOR games 



Funding was provided by National Science Foundation (Grant No. NSF DMS-1201886) and Ministerio de Economía y Competitividad (Grant Nos. RYC-2012-10449, MTM2014-54240-P, SEV-2015-0554).


  1. 1.
    Bell, J.S.: On the Einstein–Poldolsky–Rosen paradox. Physics 1, 195 (1964)CrossRefGoogle Scholar
  2. 2.
    Briet, J., Vidick, T.: Explicit lower and upper bounds on the entangled value of multiplayer XOR games. Commun. Math. Phys. 321(1), 181–207 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brukner, C., Zukowski, M., Pan, J.-W., Zeilinger, A.: Violation of Bell’s inequality: criterion for quantum communication complexity advantage. Phys. Rev. Lett. 92, 127901 (2004)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86(2), 419 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Buhrman, H., Cleve, R., Massar, S., de Wolf, R.: Non-locality and communication complexity. Rev. Mod. Phys. 82, 665 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Buhrman, H., Czekaj, L., Grudka, A., Horodecki, M., Horodecki, P., Markiewicz, M., Speelman, F., Strelchuk, S.: Quantum communication complexity advantage implies violation of a Bell inequality. PNAS 113(12), 3191–3196 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Buhrman, H., Regev, O., Scarpa, G., de Wolf, R.: Near-Optimal and Explicit Bell Inequality Violations. In: IEEE Conference on Computational Complexity, pp. 157–166 (2011)Google Scholar
  8. 8.
    Cleve, R., Hoyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proceedings of 19th IEEE Conference on Computational Complexity (CCC’04), pp. 236–249. IEEE Computer Society (2004)Google Scholar
  9. 9.
    Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland, Amsterdam (1993)zbMATHGoogle Scholar
  10. 10.
    Ekert, A., Renner, R.: The ultimate physical limits of privacy. Nature 507(7493), 443–447 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential separations for one-way quantum communication complexity, with applications to cryptography. In: Proceedings of the 39th ACM STOC, pp. 516–525 (2007)Google Scholar
  12. 12.
    Junge, M., Oikhberg, T., Palazuelos, C.: Reducing the number of questions in nonlocal games. J. Math. Phys. 57, 102203 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Commun. Math. Phys. 306(3), 695–746 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Junge, M., Palazuelos, C.: CB-norm estimates for maps between noncommutative \(L_p\)-spaces and quantum channel theory. Int. Math. Res. Not. 3, 875–925 (2016)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  16. 16.
    Laplante, S., Lauriere, M., Nolin, A., Roland, J., Senno, G.: Robust Bell inequalities from communication complexity. In: 11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016), volume 61 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 5:1–5:24 (2016)Google Scholar
  17. 17.
    Latala, R.: Some estimates of norms of random matrices. Proc. Am. Math. Soc. 133(5), 1273–1282 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Linial, N., Mendelson, S., Schechtman, G., Shraibman, A.: Complexity measures of sign matrices. Combinatorica 27(4), 439–463 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Linial, N., Shraibman, A.: Lower bounds in communication complexity based on factorization norms. Random Struct. Algorithms 34, 368–394 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Palazuelos, C., Vidick, T.: Survey on nonlocal games and operator space theory. J. Math. Phys. 57, 015220 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Palazuelos, C., Yin, Z.: Large bipartite Bell violations with dichotomic measurements. Phys. Rev. A 92, 052313 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Pérez-García, D., Wolf, M.M., Palazuelos, C., Villanueva, I., Junge, M.: Unbounded violation of tripartite Bell inequalities. Comm. Math. Phys. 279(2), 455–486 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Raz, R.: Exponential separation of quantum and classical communication complexity. In: Proceedings of 31st ACM STOC, pp. 358–367 (1999)Google Scholar
  24. 24.
    Regev, O., Klartag, B.: Quantum one-way communication can be exponentially stronger than classical communication. In: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing (STOC’11), pp. 31–40 (2011)Google Scholar
  25. 25.
    Schechtman, G.: More on embeddings subspaces of \(L_p\) in \(\ell _r^n\). Compos. Math. 61, 159–170 (1987)Google Scholar
  26. 26.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tsirelson, B.S.: Some results and problems on quantum Bell-type inequalities. Hadron. J. Supp. 8(4), 329–345 (1993)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Instituto de Ciencias Matemáticas (ICMAT), Campus de CantoblancoMadridSpain
  3. 3.Departamento de Análisis Matemático, Facultad de Ciencias MatemáticasUniversidad Complutense de MadridMadridSpain
  4. 4.Instituto de Matemática Interdisciplinar (IMI)Universidad Complutense de MadridMadridSpain

Personalised recommendations