Advertisement

Coherent population transfer in multi-level Allen–Eberly models

  • Wei Li
  • Li-Xiang Cen
Article

Abstract

We investigate the solvability of multi-level extensions of the Allen–Eberly model and the population transfer yielded by the corresponding dynamical evolution. We demonstrate that, under a matching condition of the frequency, the driven two-level system and its multi-level extensions possess a stationary-state solution in a canonical representation associated with a unitary transformation. As a consequence, we show that the resulting protocol is able to realize complete population transfer in a nonadiabatic manner. Moreover, we explore the imperfect pulsing process with truncation and display that the nonadiabatic effect in the evolution can lead to suppression to the cutoff error of the protocol.

Keywords

Population transfer Canonical transformation Nonadiabatic effect Transition probability 

References

  1. 1.
    Weitz, M., Young, B.C., Chu, S.: Atomic interferometer based on adiabatic population transfer. Phys. Rev. Lett. 73, 2563 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    Goldner, L.S., Gerz, C., Spreeuw, R.J.C., Rolston, S.L., Westbrook, C.I., Phillips, W.D.: Momentum transfer in laser-cooled cesium by adiabatic passage in a light field. Phys. Rev. Lett. 72, 997 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Lawall, J., Prentiss, M.: Demonstration of a novel atomic beam splitter. Phys. Rev. Lett. 72, 993 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Vitanov, N.V., Fleischhauer, M., Shore, B.W., Bergmann, K.: Coherent manipulation of atoms and molecules by sequential laser pulses. Adv. Atom Mol. Opt. Phys. 46, 55 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Butts, D.L., Kotru, K., Kinast, J.M., Radojevic, A.M., Timmons, B.P., Stoner, R.E.: Efficient broadband raman pulses for large-area atom interferometry. J. Opt. Soc. Am. B. 30, 922 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Kumar, P., Sarma, A.K.: Frequency-modulated few-cycle optical-pulse-train-induced controllable ultrafast coherent population oscillations in two-level atomic systems. Phys. Rev. A 87, 025401 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Dittmann, P., Pesl, F.P., Martin, J., Coulston, G.W., He, G.Z., Bergmann, K.: The effect of vibrational excitation (\(3\le \nu ^{\prime }\le 19\)) on the reaction \(Na_{2} (\nu ^\prime )+ Cl\rightarrow NaCl + Na^{\ast }\). J. Chem. Phys. 97, 9472 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    Ohta, Y., Hoki, K., Fujimura, Y.: Theory of stimulated raman adiabatic passage in a degenerated reaction system: application to control of molecular handedness. J. Chem. Phys. 116, 7509 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Nitzan, A.: Chemical Dynamics in Condensed Phases. Oxford University Press, Oxford (2006)Google Scholar
  11. 11.
    Ischenko, A.A., Weber, P.M., Miller, R.J.D.: Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem. Rev. 117, 11066 (2017)CrossRefGoogle Scholar
  12. 12.
    Wei, L.F., Johansson, J.R., Cen, L.X., Ashhab, S., Nori, F.: Controllable coherent population transfers in superconducting qubits for quantum computing. Phys. Rev. Lett. 100, 113601 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Saffman, M., Walker, T.G., Mølmer, K.: quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Sun, G.Z., Wen, X.D., Mao, B., Chen, J., Yu, Y., Wu, P.H., Han, S.Y.: Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system. Nat. Commun. 1, 51 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Imamo\(\bar{{\rm g}}\)lu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)Google Scholar
  16. 16.
    Simon, C.M., Belhadj, T., Chatel, B., Amand, T., Renucci, P., Lemaitre, A., Krebs, O., Dalgarno, P.A., Warburton, R.J., Marie, X., Urbaszek, B.: Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses. Phys. Rev. Lett. 106, 166801 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Allen, L., Eberly, J.H.: Optical Resonance and Two-Level Atoms. Dover, New York (1975)Google Scholar
  18. 18.
    Hioe, F.T.: Solution of Bloch equations involving amplitude and frequency modulations. Phys. Rev. A 30, 2100 (1984)ADSCrossRefGoogle Scholar
  19. 19.
    Carroll, C.E., Hioe, F.T.: Driven three-state model and its analytic solutions. J. Math. Phys. 29, 487 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Landau, L.D.: Zur theorie der energieubertragung. Phys. Z. Sowjetunion 2, 46 (1932)zbMATHGoogle Scholar
  21. 21.
    Zener, C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. A. 137, 696 (1932)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Rosen, N., Zener, C.: Double Stern–Gerlach experiment and related collision phenomena. Phys. Rev. 40, 502 (1932)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Bambini, A., Berman, P.R.: Analytic solutions to the two-state problem for a class of coupling potentials. Phys. Rev. A 23, 2496 (1981)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Demkov, Y.N., Kunike, M.: Hypergeometric models of the two-state approximation in the theory of atomic collisions. Vestn. Leningr. Univ. Ser. Fiz. Khim 16, 39 (1969)Google Scholar
  25. 25.
    Demkov, Y.N.: Charge transfer at small resonance defects. Sov. Phys. JETP 18, 138 (1964)Google Scholar
  26. 26.
    Nikitin, E.E.: The probability of nonadiabatic transitions in the case of nondivergent terms. Opt. Spectrosc. 13, 431 (1962)ADSGoogle Scholar
  27. 27.
    Nikitin, E.E.: The theory of nonadiabatic transitions: recent development with exponential models. Adv. Quantum Chem. 5, 135 (1970)ADSCrossRefGoogle Scholar
  28. 28.
    Carroll, C.E., Hioe, F.T.: Generalisation of the Landau–Zener calculation to three levels. J. Phys. A. 19, 3597 (1986)zbMATHGoogle Scholar
  29. 29.
    Sinitsyn, N.A., Li, F.X.: Solvable multistate model of Landau–Zener transitions in cavity QED. Phys. Rev. A 93, 063859 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Li, W., Cen, L.-X.: Dynamical transitions in a modulated Landau–Zener model with finite driving fields. Ann. Phys. 389C, 1 (2018)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Barnes, E., Sarma, S.D.: Analytically solvable driven time-dependent two-level quantum systems. Phys. Rev. Lett. 109, 060401 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Barnes, E.: Analytically solvable two-level quantum systems and Landau–Zener interferometry. Phys. Rev. A 88, 013818 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Yang, G., Li, W., Cen, L.-X.: Nonadiabatic population transfer in a tangent-pulse driven quantum model. Chin. Phys. Lett. 35, 013201 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    Koppens, F.H.L., Buizert, C., Tielrooij, K.J., Vink, I.T., Nowack, K.C., Meunier, T., Kouwenhoven, L.P., Vandersypen, L.M.K.: Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Nowack, K.C., Koppens, F.H.L., Nazarov, Y.V., Vandersypen, L.M.K.: Coherent control of a single electron spin with electric fields. Science 318, 1430 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Zhang, J., Shim, J.H., Niemeyer, I., Taniguchi, T., Teraji, T., Abe, H., Onoda, S., Yamamoto, T., Ohshima, T., Isoya, J., Suter, D.: Experimental inplementation of assisted quantum adiabatic passage in a single spin. Phys. Rev. Lett. 110, 240501 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Berry, M.V.: Transitionless quantum driving. J. Phys. A 42, 365303 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Chen, X., Lizuain, I., Ruschhaupt, A., Guery-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Theoretical Physics, College of Physical Science and TechnologySichuan UniversityChengduChina

Personalised recommendations