Quantum coherence behaviors of fermionic system in non-inertial frame

Article
  • 45 Downloads

Abstract

In this paper, we analyze the quantum coherence behaviors of a single qubit in the relativistic regime beyond the single-mode approximation. Firstly, we investigate the freezing condition of quantum coherence in fermionic system. We also study the quantum coherence tradeoff between particle and antiparticle sector. It is found that there exists quantum coherence transfer between particle and antiparticle sector, but the coherence lost in particle sector is not entirely compensated by the coherence generation of antiparticle sector. Besides, we emphatically discuss the cohering power and decohering power of Unruh channel with respect to the computational basis. It is shown that cohering power is vanishing and decohering power is dependent of the choice of Unruh mode and acceleration. Finally, we compare the behaviors of quantum coherence with geometric quantum discord and entanglement in relativistic setup. Our results show that this quantifiers in two region converge at infinite acceleration limit, which implies that this measures become independent of Unruh modes beyond the single-mode approximations. It is also demonstrated that the robustness of quantum coherence and geometric quantum discord are better than entanglement under the influence of acceleration, since entanglement undergoes sudden death.

Keywords

Quantum coherence Decohering power Fermionic system Unruh effect Beyond the single-mode approximation 

Notes

Acknowledgements

This work is supported by the Science Foundation for Young Teachers of Wuyi University (2015zk01), the Doctoral Research Foundation of Wuyi University (2017BS07) and the National Natural Science Foundation of China (No. 61502179).

References

  1. 1.
    Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 74, 93 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Friis, N., Bruschi, D.E., Louko, J., Fuentes, I.: Motion generates entanglement. Phys. Rev. D 85, 081701(R) (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Bruschi, D.E., Fuentes, I., Louko, J.: Voyage to Alpha Centauri: entanglement degradation of cavity modes due to motion. Phys. Rev. D 85, 061701(R) (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Wang, J.C., Tian, Z.H., Jing, J.L., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. Phys. Rev. A 93, 062105 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Wang, J.C., Tian, Z.H., Jing, J.L., Fan, H.: Influence of relativistic effects on satellite-based clock synchronization. Phys. Rev. D 93, 065008 (2016)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Wang, J.C., Jing, J.L., Fan, H.: Quantum discord and measurement-induced disturbance in the background of dilaton black holes. Phys. Rev. D 90, 025032 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Martin-Martinez, E., León, J.: Fermionic entanglement that survives a black hole. Phys. Rev. A 80, 042318 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Martin-Martinez, E., Garay, L.J., León, J.: Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82, 064006 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Martin-Martinez, E., Garay, L.J., León, J.: Quantum entanglement produced in the formation of a black hole. Phys. Rev. D 82, 064028 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Alsing, P.M., Fuentes-Schulle, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Pan, Q., Jing, J.: Degradation of nonmaximal entanglement of scalar and Dirac fields in noninertial frames. Phys. Rev. A 77, 024302 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Hwang, M.R., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, J.C., Cao, H.X., Jing, J.L., Fan, H.: Gaussian quantum steering and its asymmetry in curved spacetime. Phys. Rev. D 93, 125011 (2016)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Montero, M., Martn-Martnez, E.: Entanglement of arbitrary spin fields in non-inertial frames. Phys. Rev. A 84, 012337 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Ramzan, M., Khan, M.K.: Decoherence and entanglement degradation of a qubit-qutrit system in non-inertial frames. Quantum Inf. Process. 11, 443 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Wang, J., Deng, J., Jing, J.: Classical correlation and quantum discord sharing of Dirac fields in noninertial frames. Phys. Rev. A 81, 052120 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Brown, E.G., Cormier, K., Martn-Martnez, E., Mann, R.B.: Vanishing geometric discord in non-inertial frames. Phys. Rev. A 86, 032108 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Ramzan, M.: Decoherence dynamics of geometric measure of quantum discord and measurement induced nonlocality for noninertial observers at finite temperature. Quantum Inf. Process. 12, 2721 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Bruschi, D.E., Louko, J., Martín-Martínez, E., Dragan, A., Fuentes, I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Montero, M., Martín-Martínez, E.: Fermionic entanglement ambiguity in non-inertial frames. Phys. Rev. A 83, 062323 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Martín-Martínez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83, 052306 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Montero, M., Martin-Martinez, E.: Convergence of fermionic field entanglement at infinite acceleration in relativistic quantum information. Phys. Rev. A 85, 024301 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Chang, J., Kwon, Y.: Entanglement behavior of quantum states of fermionic system in accelerated frame. Phys. Rev. A 85, 032302 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Ramzan, M.: Quantum discord amplification of fermionic systems in an accelerated frame. Quantum Inf. Process. 13, 259 (2014)CrossRefMATHGoogle Scholar
  25. 25.
    Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Scully, M.O.: Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett. 67, 1855 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  29. 29.
    Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Vogel, W., Sperling, J.: Unified quantification of nonclassicality and entanglement. Phys. Rev. A 89, 052302 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Mraz, M., Sperling, J., Vogel, W., Hage, B.: Witnessing the degree of nonclassicality of light. Phys. Rev. A 90, 033812 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., LutzNanoscale, E.: Heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)CrossRefGoogle Scholar
  34. 34.
    Correa, L.A., Palao, J.P., Alonso, D., Adesso, G.: Quantum-enhanced absorption refrigerators. Sci. Rep. 4, 3949 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  38. 38.
    Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar feld. Ann. Phys. 377, 484 (2017)ADSCrossRefMATHGoogle Scholar
  39. 39.
    Huang, Z.M., Situ, H.Z., Zhao, L.H.: Payoffs and coherence of a quantum two-player game under noisy environment. Eur. Phys. J. Plus 132, 152 (2017)CrossRefGoogle Scholar
  40. 40.
    Huang, Z.M.: Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16, 207 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Huang, Z.M., Situ, H.Z.: Optimal protection of quantum coherence in noisy environment. Int. J. Theor. Phys. 56, 503 (2017)CrossRefMATHGoogle Scholar
  42. 42.
    Huang, Z.M.: Quantum correlation and coherence in the background of dilaton black hole. J. Phys. Soc. Jpn. 86, 124007 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    Huang, Z.M., Situ, H.Z.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Situ, H.Z., Hu, X.Y.: Dynamics of relative entropy of coherence under Markovian channels. Quantum Inf. Process. 15, 4649 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Deveaud-Plédran, B., Quattropani, A., Schwendimann P. (Eds.), Quantum coherence in solid state systems. In: Proceedings of the International School of Physics Enrico Fermi, vol. 171, IOS Press, Amsterdam, ISBN: 978-1-60750-039-1 (2009)Google Scholar
  46. 46.
    Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)CrossRefGoogle Scholar
  47. 47.
    Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.-K., Manc̆al, T., Cheng, Y.-C., Blakenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature (London) 446, 782 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature (London) 463, 644 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)CrossRefGoogle Scholar
  50. 50.
    Chin, A.W., Prior, J., Rosenbach, R., Caycedo-Soler, F., Huelga, S.F., Plenio, M.B.: The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113 (2013)CrossRefGoogle Scholar
  51. 51.
    Cai, J., Plenio, M.B.: Chemical compass model for avian magnetoreception as a quantum coherent device. Phys. Rev. Lett. 111, 230503 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    Smyth, C., Scholes, G.D.: Method of developing analytical multipartite delocalization measures for mixed W-like states. Phys. Rev. A 90, 032312 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    Pires, D.P., Celeri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015)ADSCrossRefGoogle Scholar
  57. 57.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)ADSCrossRefGoogle Scholar
  60. 60.
    Chitambar, E., Hsieh, M.-H.: Relating the resource theories of entanglement and quantum coherence. arXiv:1509.07458 (2015)
  61. 61.
    Ma, J.J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)ADSCrossRefGoogle Scholar
  63. 63.
    Hu, X., Fan, H.: Coherence extraction from measurement-induced disturbance. arXiv:1508.01978 (2015)
  64. 64.
    Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)ADSCrossRefGoogle Scholar
  65. 65.
    Xi, Z., Hu, M., Li, Y., Fan, H.: Cohering power of unitary operations and de-cohering of quantum operations. arXiv:1510.06473 (2015)
  66. 66.
    Garca-Daz, M., Egloff, D., Plenio, M.B.: A note on coherence power of N-dimensional unitary operators. arXiv:1510.06683 (2015)
  67. 67.
    Martín-Martínez, E.: Relativistic quantum information: developments in quantum information in general relativistic scenarios. arXiv:1106.0280 (2011)
  68. 68.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefMATHGoogle Scholar
  69. 69.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefMATHGoogle Scholar
  71. 71.
    Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Lu, X.M., Xi, Z.J., Sun, Z., Wang, X.: Geometric measure of quantum discord under decoherence. Quantum Inf. Comput. 10, 0994 (2010)MathSciNetMATHGoogle Scholar
  73. 73.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Economics and ManagementWuyi UniversityJiangmenChina
  2. 2.College of Mathematics and InformaticsSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations