Advertisement

Quantum correlations for bipartite continuous-variable systems

  • Ruifen Ma
  • Jinchuan Hou
  • Xiaofei Qi
  • Yangyang Wang
Article
  • 124 Downloads

Abstract

Two quantum correlations Q and \(Q_\mathcal P\) for \((m+n)\)-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all \((m+n)\)-mode Gaussian states with zero quantum correlations are product states. Generally, \(Q\ge Q_{\mathcal P}\), but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.

Keywords

Quantum correlation Continuous-variable systems Gaussian states Gaussian measurement 

Notes

Acknowledgements

The authors thank all referees for their many helpful comments. This work is partially supported by Natural Science Foundation of China (11671006, 11671294) and Outstanding Youth Foundation of Shanxi Province (201701D211001).

References

  1. 1.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ollivier, H., Zurek, W .H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Guo, Y., Hou, J.-C.: Local channels preserving the states without measurement-induced nonlocality. J. Phys. A Math. Theor. 46, 325301 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Guo, Y., Hou, J.-C.: A class of separable quantum states. J. Phys. A Math. Theor. 45, 505303 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mista Jr., L., Tatham, R., Girolami, D., Korolkova, N., Adesso, G.: Measurement-induced disturbances and nonclassical correlations of Gaussian states. Phys. Rev. A 83, 042325 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Adesso, G., Datta, A.: Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105, 030501 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Su, X.-L.: Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull. 59(11), 1083–1090 (2014)CrossRefGoogle Scholar
  14. 14.
    Adesso, G., Girolami, D.: Gaussian geometric discord. Int. J. Quantum Inf. 9, 1773–1786 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, D., Zhao, X., Long, G.-L.: Multiple entropy measures for multi-particle pure quantum state. Commun. Theor. Phys. 54, 825 (2010)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Cao, Y., Li, H., Long, G.-L.: Entanglement of linear cluster states in terms of averaged entropies. Chin. Sci. Bull. 58, 48–52 (2013)CrossRefGoogle Scholar
  17. 17.
    Guo, Y., Li, X.-L., Li, B., Fan, H.: Quantum correlation induced by the average distance between the reduced states. Int. J. Theor. Phys. 54(6), 2022–2030 (2015)CrossRefzbMATHGoogle Scholar
  18. 18.
    Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, X.-B., Hiroshima, T., Tomita, A., Hayashi, M.: Quantum information with Gaussian states. Phys. Rep. 448, 1–111 (2007)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Anders, J.: Estimating the degree of entanglement of unknown Gaussian states. arXiv:quant-ph/0610263 (2006)
  21. 21.
    Giedke, G., Cirac, J.I.: Characterization of Gaussian operations and distillation of Gaussian states. Phys. Rev. A 66, 032316 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Scutaru, H.: Fidelity for displaced squeezed states and the oscillator semigroup. J. Phys. A Math. Gen. 31(15), 3659–3663 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Xu, J.: Which bipartite states are lazy. Int. J. Theor. Phys. 54, 860 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Bowen, W.P., Schnabel, R., Lam, P.K., Ralph, T.C.: Experimental characterization of continuous-variable entanglement. Phys. Rev. A 69, 012304 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Giedke, G., Cirac, J.I.: Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox. Phys. Rev. A 80, 032112 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ruifen Ma
    • 1
    • 2
  • Jinchuan Hou
    • 1
    • 3
  • Xiaofei Qi
    • 1
    • 4
  • Yangyang Wang
    • 1
  1. 1.Department of MathematicsShanxi UniversityTaiyuanPeople’s Republic of China
  2. 2.School of Applied ScienceTaiyuan University of Science and TechnologyTaiyuanPeople’s Republic of China
  3. 3.Department of MathematicsTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  4. 4.Institute of Big Data Science and IndustryShanxi UniversityTaiyuanPeople’s Republic of China

Personalised recommendations