Bipartite non-classical correlations for a lossy two connected qubit–cavity systems: trace distance discord and Bell’s non-locality

  • Abdel-Baset A. Mohamed


In this paper, some non-classical correlations are investigated for bipartite partitions of two qubits trapped in two spatially separated cavities connected by an optical fiber. The results show that the trace distance discord and Bell’s non-locality introduce other quantum correlations beyond the entanglement. Moreover, the correlation functions of the trace distance discord and the Bell’s non-locality are very sensitive to the initial correlations, the coupling strengths, and the dissipation rates of the cavities. The fluctuations of the correlation functions between their initial values and gained (loss) values appear due to the unitary evolution of the system. These fluctuations depend on the chosen initial correlations between the two subsystems. The maximal violations of Bell’s inequality occur when the logarithmic negativity and the trace distance discord reach certain values. It is shown that the robustness of the non-classical correlations, against the dissipation rates of the cavities, depends on the bipartite partitions reduced density matrices of the system, and is also greatly enhanced by choosing appropriate coupling strengths.


Non-classical correlation Trace distance discord Bell’s non-locality Optical fiber 



The author is very grateful to the referees and the associate editor for their important remarks which have helped him to improve the manuscript.


  1. 1.
    Vedral, V.: Quantum entanglement. Nat. Phys. 10, 256 (2014)CrossRefzbMATHGoogle Scholar
  2. 2.
    Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  3. 3.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899–6905 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Huang, Z.M., Qiu, D.W.: Geometric quantum discord under noisy environment. Quantum Inf. Process. 15, 1979 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Luo, S., Fu, S.: Measurement-Induced Nonlocality. Phys. Rev. Lett. 106, 120401 (2011)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Paula, F.M., Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Huang, Z.M., Qiu, D.W., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Huang, Z.M., Situ, H.Z.: Quantum coherence and correlation in spin models with Dzyaloshinskii–Moriya interaction. Int. J. Theor. Phys. 56, 2178 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction. Ann. Phys. 366, 32–44 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mazzola, L., Bellomo, B., Lo-Franco, R., Compagno, G.: Connection among entanglement, mixedness, and nonlocality in a dynamical context. Phys. Rev. A 81, 052116 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Bipartite non-local correlations in a double-quantum-dot excitonic system. J. Phys. A Math. Theor. 47, 335301 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Bell, J.S.: On the einstein podolsky rosen paradox. Physics 1, 195 (1964)CrossRefGoogle Scholar
  26. 26.
    Acin, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Gisin, N., Thew, R.: Quantum communication. Nat. Photon 1, 165 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Paternostro, M., Kim, M.S., Palma, G.M.: Non-local quantum gates: a cavity-quantum-electrodynamics implementation. J. Mod. Opt. 50, 2075–2094 (2003)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    Clark, S., Peng, A., Gu, M., Parkins, S.: Unconditional preparation of entanglement between atoms in cascaded optical cavities. Phys. Rev. Lett. 91, 177901 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Duan, L.-M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Cho, J., Lee, H.-W.: Generation of atomic cluster states through the cavity input-output process. Phys. Rev. Lett. 95, 160501 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Serafini, A., Mancini, S., Bose, S.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. Lett. 96, 010503 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Mohamed, A.-B.A., Hessian, H.A., Hashem, M.: Effect of the phase damping of two qubits on both the quantum discord and non-local correlation. Optik 126, 3432–3436 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Situ, H.Z., Hu, X.Y.: Dynamics of relative entropy of coherence under Markovian channels. Quantum Inf. Process. 15, 4649 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Su, S.L., Shao, X.Q., Guo, Q., Cheng, L.Y., Wang, H.F., Zhang, S.: Preparation of entanglement between atoms in spatially separated cavities via fiber loss. Eur. Phys. J. D 69, 123 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Zheng, B., Shen, L.-T., Chen, M.-F.: Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities. Quantum Inf. Process. 15, 2181–2191 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D., Reichel, J.: Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Lettner, M., Mücke, M., Riedl, S., Vo, C., Hahn, C., Baur, S., Bochmann, J., Ritter, S., Dürr, S., Rempe, G.: Remote entanglement between a single atom and a Bose–Einstein condensate. Phys. Rev. Lett. 106, 210503 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Muller, A., Flagg, E.B., Metcalfe, M., Lawall, J., Solomon, G.S.: Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity. Appl. Phys. Lett. 95, 173101 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)zbMATHGoogle Scholar
  43. 43.
    Di Fidio, C., Vogel, W., Khanbekyan, M., Welsch, D.-G.: Photon emission by an atom in a lossy cavity. Phys. Rev. A 77, 043822 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Man, Z.X., Xia, Y.J., An, N.B.: Quantum dissonance induced by a thermal field and its dynamics in dissipative systems. Eur. Phys. J. D 64, 521 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Torres, J.M.: Closed-form solution of Lindblad master equations without gain. Phys. Rev. A 89, 052133 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Mohamed, A.-B., Eleuch, H.: Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: entanglement and non-Gaussanity. Eur. Phys. J. D 69, 191 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Mohamed, A.-B., Eleuch, H.: Quantum correlation control for two semiconductor microcavities connected by an optical fiber. Phys. Scr. 92, 065101 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    Ghasemi, M., Tavassoly, M.K., Nourmandipour, A.: Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method. Eur. Phys. J. Plus 132, 531 (2017)CrossRefGoogle Scholar
  49. 49.
    de Assis, R.J., Sales, J.S., de Almeida, N.G.: Unambiguous discrimination of nonorthogonal quantum states in cavity QED. Phys. Lett. A 381, 2927 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    Vidal, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    Metwally, N.: Single and double changes of entanglement. J. Opt. Soc. 31, 691 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    Ann, K., Jaeger, G.: Finite-time destruction of entanglement and non-locality by environmental influences. Found Phys. 39, 790–828 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Ann, K., Jaeger, G.: Disentanglement and decoherence in two-spin and three-spin systems under dephasing. Phys. Rev. B 75, 115307 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    Ficek, Z., Tanaś, R.: Delayed sudden birth of entanglement. Phys. Rev. A 77, 054301 (2008)ADSCrossRefzbMATHGoogle Scholar
  56. 56.
    Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–60 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Mohamed, A.-B.A.: Thermal effect on the generated quantum correlation between two superconducting qubits. Laser Phys. Lett. 13, 085202 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of SciencePrince Sattam Bin Abdulaziz UniversityAl-AflajSaudi Arabia
  2. 2.Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations