Advertisement

Quantum reversible circuit of AES-128

  • Mishal Almazrooie
  • Azman Samsudin
  • Rosni Abdullah
  • Kussay N. Mutter
Article

Abstract

An explicit quantum design of AES-128 is presented in this paper. The design is structured to utilize the lowest number of qubits. First, the main components of AES-128 are designed as quantum circuits and then combined to construct the quantum version of AES-128. Some of the most efficient approaches in classical hardware implementations are adopted to construct the circuits of the multiplier and multiplicative inverse in \({\mathbb {F}}_{2}[x]/(x^8+x^4+x^3+x+1)\). The results show that 928 qubits are sufficient to implement AES-128 as a quantum circuit. Moreover, to maintain the key uniqueness when the quantum AES-128 is employed as a Boolean function within a Black-box in other key searching quantum algorithms, a method with a cost of 930 qubits is also proposed.

Keywords

Quantum cryptanalysis Grover search Symmetric cryptography Block cipher Quantum simulation Circuit optimization 

References

  1. 1.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978).  https://doi.org/10.1145/359340.359342 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985).  https://doi.org/10.1109/TIT.1985.1057074. (conference version appeared in CRYPTO’84, pp. 10-18)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Peter, W.: Shor polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).  https://doi.org/10.1137/S0097539795293172 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Akihiro, Y.: Ishizuka Hirokazu quantum cryptanalysis of block ciphers. Algebraic systems, formal languages and computations. RIMS Kokyuroku 1166, 235–243 (2000)Google Scholar
  5. 5.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. of the 28th Annual ACM Symposium on Theory of Computing (STOC), pp. 212–219 (1996)Google Scholar
  6. 6.
    Kaplan, M.: Quantum Attacks Against Iterated Block Ciphers. CoRR. abc/1410.1434 (2014). arXiv:1410.1434
  7. 7.
    Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37, 210–239 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Roetteler, M., Steinwandt, R.: A note on quantum related-key attacks. Inf. Process. Lett. 115(1), 40–44 (2015). ISSN 0020-0190,  https://doi.org/10.1016/j.ipl.2014.08.009, (http://www.sciencedirect.com/science/article/pii/S0020019014001719)
  9. 9.
    Winternitz, R., Hellman, M.: Chosen-key attacks on a block cipher. Cryptologia XI(1), 16–20 (1987)CrossRefzbMATHGoogle Scholar
  10. 10.
    Simon, D.: On the power of quantum computation. In: Proceedings of the 35th IEEE Symposium on the Foundations of Computer Science (FOCS), pp. 116–123 (1994)Google Scholar
  11. 11.
    Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum collision search algorithm and implications on symmetric cryptography. Cryptology ePrint Archive, Report 2017/847 (2017)Google Scholar
  12. 12.
    Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology CRYPTO 2016. CRYPTO 2016. Lecture Notes in Computer Science, vol. 9815. Springer, Berlin (2016)Google Scholar
  13. 13.
    Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algorithm to AES: quantum resource estimates. In: Post-Quantum Cryptography: 7th International Workshop, PQCrypto 2016, Fukuoka, Japan, Springer International Publishing (2016).  https://doi.org/10.1007/978-3-319-29360-8_3
  14. 14.
    NIST, Specification for the ADVANCED ENCRYPTION STANDARD (AES), Federal Information Processing Standards Publication 197 (2001)Google Scholar
  15. 15.
    Williams, C.P.: Explorations in Quantum Computing. Springer, London, pp. 51–122. ISBN: 978-1-84628-887-6,  https://doi.org/10.1007/978-1-84628-887-6_2
  16. 16.
    Zhang, X., Parhi, K.K.: High-speed VLSI architectures for the AES algorithm. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(9), 957–967 (2004).  https://doi.org/10.1109/TVLSI.2004.832943 ADSCrossRefGoogle Scholar
  17. 17.
    Kshirsagar, R.V., Vyawahare, M.V.: FPGA implementation of high speed VLSI architectures for AES algorithm. In: Emerging Trends in Engineering and Technology (ICETET), 2012 Fifth International Conference on, Himeji, 2012, pp. 239–242.  https://doi.org/10.1109/ICETET.2012.53
  18. 18.
    Jarvinen, K.U., Tommiska, M.T., Skytta, J.O.: A fully pipelined memoryless 17.8 Gbps AES-128 encryptor. In: Proceedings of the 2003 ACM/SIGDA Eleventh International Symposium on Field Programmable Gate Arrays (FPGA ’03), pp. 207–215. ACM, New York, NY, USA (2003).  https://doi.org/10.1145/611817.611848
  19. 19.
    Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) Proceedings of the 7th International Conference on Cryptographic Hardware and Embedded Systems (CHES’05), pp. 441–455. Springer, Berlin (2005).  https://doi.org/10.1007/11545262_32
  20. 20.
    Parmar, N.D., Kadam, P.: Pipelined implementation of dynamic Rijndael S-Box. Int. J. Comput. Appl. 111(10), 36–38 (2015)Google Scholar
  21. 21.
    Weber, R., Rettberg, A.: Implementation of the AES algorithm for a reconfigurable, bit serial, fully pipelined architecture. In: Becker, J., Woods, R., Athanas, P., Morgan, F. (eds.) Proceedings of the 5th International Workshop on Reconfigurable Computing: Architectures, Tools and Applications (ARC ’09), pp. 330–335. Springer, Berlin (2009).  https://doi.org/10.1007/978-3-642-00641-8_37
  22. 22.
    Guajardo, J., Paar, C.: Itoh–Tsujii inversion in standard basis and its application in cryptography and codes. Des. Codes Cryptogr. 25(2), 207 (2002).  https://doi.org/10.1023/A:1013860532636 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Cheung, D., Maslov, D., Mathew, J., Pradhan, D.K.: On the design and optimization of a quantum polynomial-time attack on elliptic curve cryptography. In: Kawano, Y., Mosca, M. (eds.) Theory of Quantum Computation, Communication, and Cryptography, Lecture Notes in Computer Science, Vol. 5106, pp. 96–104. Springer, Berlin (2008).  https://doi.org/10.1007/978-3-540-89304-2_9
  24. 24.
    Reyhani-Masoleh, A., Hasan, M.A.: Low complexity bit parallel architectures for polynomial basis multiplication over GF(\(2^m\)). IEEE Trans. Comput. 53(8), 945–959 (2004).  https://doi.org/10.1109/TC.2004.47 CrossRefGoogle Scholar
  25. 25.
    Reyhani-Masoleh, A.: A new bit-serial architecture for field multiplication using polynomial bases. In: Oswald, E., Rohatgi, P. (eds.) Proceedings of the 10th International Workshop on Cryptographic Hardware and Embedded Systems (CHES ’08), pp. 300–314. Springer, Berlin (2008).  https://doi.org/10.1007/978-3-540-85053-3_19
  26. 26.
    Patel, K.N., Markov, I.L., Hayes, J.P.: Optimal synthesis of linear reversible circuits. Quantum Inf. Comput. 8(3), 282–294 (2008)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Musa, M.A., Schaefer, E.R., Wedig, S.: A simplified AES algorithm and its linear and differential cryptanalyses. Cryptologia 27(2), 148–177 (2003)CrossRefzbMATHGoogle Scholar
  28. 28.
    Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge University Press, New York (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10 Anniversary Edition 10 edn. Cambridge University Press, New York (2011)zbMATHGoogle Scholar
  30. 30.
    Rieffel, E., Polak, W.: Quantum Computing: A Gentle Introduction, 1st edn. The MIT Press, Cambridge (2011)zbMATHGoogle Scholar
  31. 31.
    William, W., Wojciech, Z.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982). Bibcode:1982PhLA...92..271D.  https://doi.org/10.1016/0375-9601(82)90084-6
  32. 32.
    Dennis, D.: Single quantum cannot be cloned. Nature 299, 802–803 (1982).  https://doi.org/10.1038/299802a0. Bibcode:1982 Natur.299.802WCrossRefzbMATHGoogle Scholar
  33. 33.
    Datta, K., Shrivastav, V., Sengupta, I., Rahaman, H.: Reversible logic implementation of AES algorithm. In: Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2013 8th International Conference on pp. 140–144 (2013)Google Scholar
  34. 34.
    Menezes, A.J., Van Ourschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (2001)zbMATHGoogle Scholar
  35. 35.
    Simulation of quantum mechanics. http://www.libquantum.de/. Retrieved 3 August 2015
  36. 36.
    Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6,7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer SciencesUniversiti Sains MalaysiaPulau PinangMalaysia
  2. 2.School of PhysicsUniversiti Sains MalaysiaPulau PinangMalaysia

Personalised recommendations