Quantum reversible circuit of AES-128

  • Mishal Almazrooie
  • Azman Samsudin
  • Rosni Abdullah
  • Kussay N. Mutter


An explicit quantum design of AES-128 is presented in this paper. The design is structured to utilize the lowest number of qubits. First, the main components of AES-128 are designed as quantum circuits and then combined to construct the quantum version of AES-128. Some of the most efficient approaches in classical hardware implementations are adopted to construct the circuits of the multiplier and multiplicative inverse in \({\mathbb {F}}_{2}[x]/(x^8+x^4+x^3+x+1)\). The results show that 928 qubits are sufficient to implement AES-128 as a quantum circuit. Moreover, to maintain the key uniqueness when the quantum AES-128 is employed as a Boolean function within a Black-box in other key searching quantum algorithms, a method with a cost of 930 qubits is also proposed.


Quantum cryptanalysis Grover search Symmetric cryptography Block cipher Quantum simulation Circuit optimization 


  1. 1.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985). (conference version appeared in CRYPTO’84, pp. 10-18)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Peter, W.: Shor polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Akihiro, Y.: Ishizuka Hirokazu quantum cryptanalysis of block ciphers. Algebraic systems, formal languages and computations. RIMS Kokyuroku 1166, 235–243 (2000)Google Scholar
  5. 5.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. of the 28th Annual ACM Symposium on Theory of Computing (STOC), pp. 212–219 (1996)Google Scholar
  6. 6.
    Kaplan, M.: Quantum Attacks Against Iterated Block Ciphers. CoRR. abc/1410.1434 (2014). arXiv:1410.1434
  7. 7.
    Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37, 210–239 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Roetteler, M., Steinwandt, R.: A note on quantum related-key attacks. Inf. Process. Lett. 115(1), 40–44 (2015). ISSN 0020-0190,, (
  9. 9.
    Winternitz, R., Hellman, M.: Chosen-key attacks on a block cipher. Cryptologia XI(1), 16–20 (1987)CrossRefzbMATHGoogle Scholar
  10. 10.
    Simon, D.: On the power of quantum computation. In: Proceedings of the 35th IEEE Symposium on the Foundations of Computer Science (FOCS), pp. 116–123 (1994)Google Scholar
  11. 11.
    Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum collision search algorithm and implications on symmetric cryptography. Cryptology ePrint Archive, Report 2017/847 (2017)Google Scholar
  12. 12.
    Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology CRYPTO 2016. CRYPTO 2016. Lecture Notes in Computer Science, vol. 9815. Springer, Berlin (2016)Google Scholar
  13. 13.
    Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algorithm to AES: quantum resource estimates. In: Post-Quantum Cryptography: 7th International Workshop, PQCrypto 2016, Fukuoka, Japan, Springer International Publishing (2016).
  14. 14.
    NIST, Specification for the ADVANCED ENCRYPTION STANDARD (AES), Federal Information Processing Standards Publication 197 (2001)Google Scholar
  15. 15.
    Williams, C.P.: Explorations in Quantum Computing. Springer, London, pp. 51–122. ISBN: 978-1-84628-887-6,
  16. 16.
    Zhang, X., Parhi, K.K.: High-speed VLSI architectures for the AES algorithm. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(9), 957–967 (2004). ADSCrossRefGoogle Scholar
  17. 17.
    Kshirsagar, R.V., Vyawahare, M.V.: FPGA implementation of high speed VLSI architectures for AES algorithm. In: Emerging Trends in Engineering and Technology (ICETET), 2012 Fifth International Conference on, Himeji, 2012, pp. 239–242.
  18. 18.
    Jarvinen, K.U., Tommiska, M.T., Skytta, J.O.: A fully pipelined memoryless 17.8 Gbps AES-128 encryptor. In: Proceedings of the 2003 ACM/SIGDA Eleventh International Symposium on Field Programmable Gate Arrays (FPGA ’03), pp. 207–215. ACM, New York, NY, USA (2003).
  19. 19.
    Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) Proceedings of the 7th International Conference on Cryptographic Hardware and Embedded Systems (CHES’05), pp. 441–455. Springer, Berlin (2005).
  20. 20.
    Parmar, N.D., Kadam, P.: Pipelined implementation of dynamic Rijndael S-Box. Int. J. Comput. Appl. 111(10), 36–38 (2015)Google Scholar
  21. 21.
    Weber, R., Rettberg, A.: Implementation of the AES algorithm for a reconfigurable, bit serial, fully pipelined architecture. In: Becker, J., Woods, R., Athanas, P., Morgan, F. (eds.) Proceedings of the 5th International Workshop on Reconfigurable Computing: Architectures, Tools and Applications (ARC ’09), pp. 330–335. Springer, Berlin (2009).
  22. 22.
    Guajardo, J., Paar, C.: Itoh–Tsujii inversion in standard basis and its application in cryptography and codes. Des. Codes Cryptogr. 25(2), 207 (2002). MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Cheung, D., Maslov, D., Mathew, J., Pradhan, D.K.: On the design and optimization of a quantum polynomial-time attack on elliptic curve cryptography. In: Kawano, Y., Mosca, M. (eds.) Theory of Quantum Computation, Communication, and Cryptography, Lecture Notes in Computer Science, Vol. 5106, pp. 96–104. Springer, Berlin (2008).
  24. 24.
    Reyhani-Masoleh, A., Hasan, M.A.: Low complexity bit parallel architectures for polynomial basis multiplication over GF(\(2^m\)). IEEE Trans. Comput. 53(8), 945–959 (2004). CrossRefGoogle Scholar
  25. 25.
    Reyhani-Masoleh, A.: A new bit-serial architecture for field multiplication using polynomial bases. In: Oswald, E., Rohatgi, P. (eds.) Proceedings of the 10th International Workshop on Cryptographic Hardware and Embedded Systems (CHES ’08), pp. 300–314. Springer, Berlin (2008).
  26. 26.
    Patel, K.N., Markov, I.L., Hayes, J.P.: Optimal synthesis of linear reversible circuits. Quantum Inf. Comput. 8(3), 282–294 (2008)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Musa, M.A., Schaefer, E.R., Wedig, S.: A simplified AES algorithm and its linear and differential cryptanalyses. Cryptologia 27(2), 148–177 (2003)CrossRefzbMATHGoogle Scholar
  28. 28.
    Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge University Press, New York (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10 Anniversary Edition 10 edn. Cambridge University Press, New York (2011)zbMATHGoogle Scholar
  30. 30.
    Rieffel, E., Polak, W.: Quantum Computing: A Gentle Introduction, 1st edn. The MIT Press, Cambridge (2011)zbMATHGoogle Scholar
  31. 31.
    William, W., Wojciech, Z.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982). Bibcode:1982PhLA...92..271D.
  32. 32.
    Dennis, D.: Single quantum cannot be cloned. Nature 299, 802–803 (1982). Bibcode:1982 Natur.299.802WCrossRefzbMATHGoogle Scholar
  33. 33.
    Datta, K., Shrivastav, V., Sengupta, I., Rahaman, H.: Reversible logic implementation of AES algorithm. In: Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2013 8th International Conference on pp. 140–144 (2013)Google Scholar
  34. 34.
    Menezes, A.J., Van Ourschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (2001)zbMATHGoogle Scholar
  35. 35.
    Simulation of quantum mechanics. Retrieved 3 August 2015
  36. 36.
    Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6,7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer SciencesUniversiti Sains MalaysiaPulau PinangMalaysia
  2. 2.School of PhysicsUniversiti Sains MalaysiaPulau PinangMalaysia

Personalised recommendations