Skip to main content
Log in

Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit–cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shor, P.W.: In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Santa Fe (1994)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 54, 2614 (1996)

    Article  ADS  Google Scholar 

  5. Buzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. You, J.Q., Tsai, J.S., Nori, F.: Controllable manipulation of macroscopic quantum states in coupled charge qubits. Phys. Rev. B 68, 024510 (2003)

    Article  ADS  Google Scholar 

  7. Wei, L.F., Liu, Y.X., Nori, F.: Testing Bell’s inequality in constantly coupled Josephson circuits by effective single-qubit operations. Phys. Rev. B 72, 104516 (2005)

    Article  ADS  Google Scholar 

  8. Wei, L.F., Liu, Y.X., Nori, F.: Generation and control of Greenberger–Horne–Zeilinger entanglement in superconducting circuits. Phys. Rev. Lett. 96, 246803 (2006)

    Article  ADS  Google Scholar 

  9. Wei, L.F., Liu, Y.X., Storcz, M.J., Nori, F.: Macroscopic Einstein–Podolsky–Rosen pairs in superconducting circuits. Phys. Rev. A 73, 052307 (2006)

    Article  ADS  Google Scholar 

  10. Yang, C.P., Chu, S.I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)

    Article  ADS  Google Scholar 

  11. You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)

    Article  ADS  Google Scholar 

  12. Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  13. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  14. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)

    Article  ADS  Google Scholar 

  15. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  16. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  17. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1–102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Blais, A., van den Maassen, B.A., Zagoskin, A.M.: Tunable coupling of superconducting qubits. Phys. Rev. Lett. 90, 127901 (2003)

    Article  ADS  Google Scholar 

  19. Zhu, S.L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. Feng, W., Wang, P., Ding, X., Xu, L., Li, X.Q.: Generating and stabilizing the Greenberger–Horne–Zeilinger state in circuit QED: joint measurement, Zeno effect, and feedback. Phys. Rev. A 83, 042313 (2011)

    Article  ADS  Google Scholar 

  21. Aldana, S., Wang, Y.D., Bruder, C.: Greenberger–Horne–Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus. Phys. Rev. B 84, 134519 (2011)

    Article  ADS  Google Scholar 

  22. Yang, C.P., Su, Q.P., Zheng, S.B., Nori, F.: Entangling superconducting qubits in a multi-cavity system. New J. Phys. 18, 013025 (2016)

    Article  ADS  Google Scholar 

  23. Yang, C.P., Su, Q.P., Zheng, S.B., Han, S.: Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A 87, 022320 (2013)

    Article  ADS  Google Scholar 

  24. Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170 (2012)

    Article  ADS  Google Scholar 

  25. Leek, P.J., Filipp, S., Maurer, P., Baur, M., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Wallraff, A.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511(R) (2009)

    Article  ADS  Google Scholar 

  26. DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240 (2009)

    Article  ADS  Google Scholar 

  27. Ansmann, M., Wang, H., Bialczak, R.C., Hofheinz, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Cleland, A.N., Martinis, J.M.: Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504 (2009)

    Article  ADS  Google Scholar 

  28. Chow, J.M., DiCarlo, L., Gambetta, J.M., Nunnenkamp, A., Bishop, L.S., Frunzio, L., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Detecting highly entangled states with a joint qubit readout. Phys. Rev. A 81, 062325 (2010)

    Article  ADS  Google Scholar 

  29. DiCarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574 (2010)

    Article  ADS  Google Scholar 

  30. Song, C., et al.: 10-Qubit entanglement and parallel logic operations with a superconducting circuit. arXiv:1703.10302

  31. Barends, R., et al.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500 (2014)

    Article  ADS  Google Scholar 

  32. Cirac, J.I., Zoller, P.: Preparation of macroscopic superpositions in many-atom systems. Phys. Rev. A 50, 2799(R) (1994)

    Article  ADS  Google Scholar 

  33. Gerry, C.C.: Preparation of multiatom entangled states through dispersive atom-cavity-field interactions. Phys. Rev. A 53, 2857 (1996)

    Article  ADS  Google Scholar 

  34. Zheng, S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87, 230404 (2001)

    Article  ADS  Google Scholar 

  35. Zheng, S.B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66, 060303 (2002)

    Article  ADS  Google Scholar 

  36. Duan, L.M., Kimble, H.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)

    Article  ADS  Google Scholar 

  37. Wang, X., Feng, M., Sanders, B.C.: Multipartite entangled states in coupled quantum dots and cavity QED. Phys. Rev. A 67, 022302 (2003)

    Article  ADS  Google Scholar 

  38. Yang, W., Xu, Z., Feng, M., Du, J.: Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity. New J. Phys. 12, 113039 (2010)

    Article  ADS  Google Scholar 

  39. Chen, Q., Yang, W., Feng, M., Du, J.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83, 054305 (2011)

    Article  ADS  Google Scholar 

  40. Koch, J., et al.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Article  ADS  Google Scholar 

  41. Yu, Y., Han, S.: Private communication

  42. Neeley, M., et al.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523 (2008)

    Article  Google Scholar 

  43. Zagoskin, A.M., Ashhab, S., Johansson, J.R., Nori, F.: Quantum two-level systems in Josephson junctions as naturally formed qubits. Phys. Rev. Lett. 97, 077001 (2006)

    Article  ADS  Google Scholar 

  44. Leek, P.J., et al.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511(R) (2009)

    Article  ADS  Google Scholar 

  45. Strand, J.D., et al.: First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505(R) (2013)

    Article  ADS  Google Scholar 

  46. Xiang, Z.L., Lü, X.Y., Li, T.F., You, J.Q., Nori, F.: Hybrid quantum circuit consisting of a superconducting flux qubit coupled to a spin ensemble and a transmission-line resonator. Phys. Rev. B 87, 144516 (2013)

    Article  ADS  Google Scholar 

  47. Neumann, P., Kolesov, R., Jacques, V., Beck, J., Tisler, J., Batalov, A., Rogers, L., Manson, N.B., Balasubramanian, G., Jelezko, F., Wrachtrup, J.: Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance. New J. Phys. 11, 013017 (2009)

    Article  ADS  Google Scholar 

  48. Pradhan, P., Anantram, M.P., Wang, K.L.: Quantum computation by optically coupled steady atoms/quantum-dots inside a quantum electro-dynamic cavity. arXiv:quant-ph/0002006

  49. Yang, C.P., Su, Q.P., Zheng, S.B., Nori, F., Han, S.: Entangling two oscillators with arbitrary asymmetric initial states. Phys. Rev. A 95, 052341 (2017)

    Article  ADS  Google Scholar 

  50. DiCarlo, L., et al.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574 (2010)

    Article  ADS  Google Scholar 

  51. Baur, M., Filipp, S., Bianchetti, R., Fink, J.M., Göppl, M., Steffen, L., Leek, P.J., Blais, A., Wallraff, A.: Measurement of Autler–Townes and mollow transitions in a strongly driven superconducting qubit. Phys. Rev. Lett. 102, 243602 (2009)

    Article  ADS  Google Scholar 

  52. Rigetti, C., et al.: Superconducting qubit in waveguide cavity with coherence time approaching 0.1 ms. Phys. Rev. B 86, 100506(R) (2012)

    Article  ADS  Google Scholar 

  53. Chang, J.B., et al.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103, 012602 (2013)

    Article  ADS  Google Scholar 

  54. Chow, J.M., et al.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5, 4015 (2014)

    Article  Google Scholar 

  55. Peterer, M.J., et al.: Coherence and decay of higher energy levels of a superconducting transmon qubit. Phys. Rev. Lett. 114, 010501 (2015)

    Article  ADS  Google Scholar 

  56. You, J.Q., et al.: Low-decoherence flux qubit. Phys. Rev. B 75, 140515(R) (2007)

    Article  ADS  Google Scholar 

  57. Sank, D., et al.: Measurement-induced state transitions in a superconducting qubit: beyond the rotating wave approximation. Phys. Rev. Lett. 117, 190503 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  58. Chen, W., Bennett, D.A., Patel, V., Lukens, J.E.: Substrate and process dependent losses in superconducting thin film resonators. Supercond. Sci. Technol. 21, 075013 (2008)

    Article  ADS  Google Scholar 

  59. Leek, P.J., Baur, M., Fink, J.M., Bianchetti, R., Steffen, L., Filipp, S., Wallraff, A.: Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104, 100504 (2010)

    Article  ADS  Google Scholar 

  60. Yang, C.P., Chu, S.I., Han, S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)

    Article  ADS  Google Scholar 

  61. Yang, C.P., Han, S.: n-Qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator. Phys. Rev. A 72, 032311 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of Fujian Province of China under Grant No. 2015J01020, the Zhejiang Natural Science Foundation under Grant No. LZ13A040002, the NKRDP of China (Grant No. 2016YFA0301802), and the National Natural Science Foundation of China under Grant Nos. (11074062, 11374083, 11774076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chui-Ping Yang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Appendix

Appendix

We here give a derivation on the state transformations induced by the application of the pulses, for the operations of steps 1, 5, and 9 described above.

For step 1: A microwave pulse of {\(\omega _{10},-\pi /2,\pi /\left( 4 {{\varOmega }}_{10}\right) \)} and then a microwave pulse of {\(\omega _{21},-\pi /2,\pi /\left( 2{{\varOmega }}_{21}\right) \)} were applied to qutrit 2 (Fig. 2a). The first pulse results in \(\left| 0\right\rangle _{2}\rightarrow \left( \left| 0\right\rangle _{2}+\left| 1\right\rangle _{2}\right) /\sqrt{2}\) according to Eq. (2), while the second pulse leads to \(\left| 1\right\rangle _{2}\rightarrow \left| 2\right\rangle _{2}\) according to Eq. (3). After the two pulses, we thus have the state transformations:

$$\begin{aligned} \left| 0\right\rangle _{2}\overset{p1}{\rightarrow }\left( \left| 0\right\rangle _{2}+\left| 1\right\rangle _{2}\right) /\sqrt{2}\overset{ p2}{\rightarrow }\left( \left| 0\right\rangle _{2}+\left| 2\right\rangle _{2}\right) /\sqrt{2}, \end{aligned}$$
(17)

where the first transformation is obtained after applying the first pulse, while the second transformation is achieved after applying the second pulse. Note that the state \(\left| 0\right\rangle _{2}\) remains unchanged during the second pulse because the pulse is highly detuned (or decoupled) from the \(\left| 1\right\rangle _{2}\rightarrow \left| 2\right\rangle _{2}\) transition of qutrit 2.

For step 5: The microwave pulses of {\(\omega _{10},-\pi /2,\pi /\left( 2 {{\varOmega }}_{10}\right) \)}, {\(\omega _{21},\pi /2,\pi /\left( 4 {{\varOmega }}_{21}\right) \)}, {\(\omega _{10},\pi /2,3\pi /\left( 4 {{\varOmega }}_{10}\right) \)}, and then {\(\omega _{21},\pi /2,\pi /\left( 2{{\varOmega }}_{21}\right) \)} were applied to qutrit 2 in turn (Fig. 2d). According to Eqs. (2) and (3), the first pulse results in \( \left| 0\right\rangle _{2}\rightarrow \left| 1\right\rangle _{2},\) the second pulse results in \(\left( \left| 1\right\rangle _{2}+\left| 2\right\rangle _{2}\right) /\sqrt{2}\rightarrow \left| 1\right\rangle _{2}\) and \(\left( -\left| 1\right\rangle _{2}+\left| 2\right\rangle _{2}\right) /\sqrt{2}\rightarrow \left| 2\right\rangle _{2},\) the third pulse results in \(\left| 1\right\rangle _{2}\rightarrow \left( \left| 0\right\rangle _{2}-\left| 1\right\rangle _{2}\right) / \sqrt{2}\) but nothing to the state \(\left| 2\right\rangle _{2}\), and the last pulse leads to \(\left| 1\right\rangle _{2}\rightarrow -\left| 2\right\rangle _{2}\) and \(\left| 2\right\rangle _{2}\rightarrow \left| 1\right\rangle _{2}.\) Based on these results, we can obtain the following state transformations:

$$\begin{aligned}&\left( \left| 0\right\rangle _{2}+\left| 2\right\rangle _{2}\right) /\sqrt{2}\overset{p1}{\rightarrow }\left( \left| 1\right\rangle _{2}+\left| 2\right\rangle _{2}\right) /\nonumber \\&\quad \sqrt{2}\overset{ p2}{\rightarrow }\left| 1\right\rangle _{2}\overset{p3}{\rightarrow } \left( \left| 0\right\rangle _{2}-\left| 1\right\rangle _{2}\right) / \sqrt{2}\overset{p4}{\rightarrow }\left( \left| 0\right\rangle _{2}+\left| 2\right\rangle _{2}\right) /\sqrt{2}, \nonumber \\&\quad \left( -\left| 0\right\rangle _{2}+\left| 2\right\rangle _{2}\right) /\sqrt{2}\overset{p1}{\rightarrow }\left( -\left| 1\right\rangle _{2}+\left| 2\right\rangle _{2}\right) /\sqrt{2}\overset{ p2}{\rightarrow }\left| 2\right\rangle _{2}\overset{p3}{\rightarrow } \left| 2\right\rangle _{2}\overset{p4}{\rightarrow }\left| 1\right\rangle _{2},\quad \end{aligned}$$
(18)

where the first, second, third, and last transformations are obtained after applying the first, second, third, and the last pulses, respectively.

For step 9: A microwave pulse of {\(\omega _{21},\pi /2,\pi /\left( 2{{\varOmega }}_{21}\right) \)} and then a microwave pulse of {\(\omega _{10},\pi /2,\pi /\left( 4{{\varOmega }}_{10}\right) \)} were applied to qutrit 2 (Fig. 2a). The first pulse results in \(\left| 2\right\rangle _{2}\rightarrow \) \(\left| 1\right\rangle _{2}\) and \(\left| 1\right\rangle _{2}\rightarrow \) \(-\left| 2\right\rangle _{2}\), while the second pulse leads to \(\left( \left| 0\right\rangle _{2}+\left| 1\right\rangle _{2}\right) /\sqrt{2}\rightarrow \) \(\left| 0\right\rangle _{2}\) and \(\left( -\left| 0\right\rangle _{2}+\left| 1\right\rangle _{2}\right) /\sqrt{2}\rightarrow \left| 1\right\rangle _{2}\) but nothing to the state \(\left| 2\right\rangle _{2}.\) Based on these results, one can have the following state transformations:

$$\begin{aligned}&\left( \left| 0\right\rangle _{2}+\left| 2\right\rangle _{2}\right) /\sqrt{2}\overset{p1}{\rightarrow }\left( \left| 0\right\rangle _{2}+\left| 1\right\rangle _{2}\right) /\sqrt{2}\overset{ p2}{\rightarrow }\left| 0\right\rangle _{2}, \nonumber \\&\quad \left( -\left| 0\right\rangle _{2}+\left| 2\right\rangle _{2}\right) /\sqrt{2}\overset{p1}{\rightarrow }\left( -\left| 0\right\rangle _{2}+\left| 1\right\rangle _{2}\right) /\sqrt{2}\overset{ p2}{\rightarrow }\left| 1\right\rangle _{2}, \nonumber \\&\quad \left| 1\right\rangle _{2}\overset{p1}{\rightarrow }-\left| 2\right\rangle _{2}\overset{p2}{\rightarrow }-\left| 2\right\rangle _{2}, \end{aligned}$$
(19)

where the first transformation is obtained after the first pulse, while the second transformation is achieved after the second pulse.

Note that the p1, p2, p3,  and p4 above represent the first, second, third, and fourth pulses, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, XM., Zheng, ZF., Lu, DM. et al. Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction. Quantum Inf Process 17, 99 (2018). https://doi.org/10.1007/s11128-018-1861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1861-6

Keywords

Navigation