Improving quantum state transfer efficiency and entanglement distribution in binary tree spin network through incomplete collapsing measurements

  • Naghi Behzadi
  • Bahram Ahansaz


We propose a mechanism for quantum state transfer (QST) over a binary tree spin network on the basis of incomplete collapsing measurements. To this aim, we perform initially a weak measurement (WM) on the central qubit of the binary tree network where the state of our concern has been prepared on that qubit. After the time evolution of the whole system, a quantum measurement reversal (QMR) is performed on a chosen target qubit. By taking optimal value for the strength of QMR, it is shown that the QST quality from the sending qubit to any typical target qubit on the binary tree is considerably improved in terms of the WM strength. Also, we show that how high-quality entanglement distribution over the binary tree network is achievable by using this approach.


Quantum state transfer Entanglement distribution Binary tree network Incomplete collapsing measurement 



This work has been supported by the Iran National Science Foundation (INSF) Grant No. 96001211.


  1. 1.
    Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Albanese, C., Christandl, M., Datta, N., Ekert, A.: Mirror inversion of quantum states in linear registers. Phys. Rev. Lett. 93, 230502 (2004)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Nikolopoulos, G.M.: Directional coupling for quantum computing and communication. Phys. Rev. Lett. 101, 200502 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Di Franco, C., Paternostro, M., Kim, M.S.: Perfect state transfer on a spin chain without state initialization. Phys. Rev. Lett. 101, 230502 (2008)CrossRefGoogle Scholar
  6. 6.
    Markiewicz, M., Wiesniak, M.: Perfect state transfer without state initialization and remote collaboration. Phys. Rev. A 79, 054304 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Wang, Y., Shuang, F., Rabitz, H.: All possible coupling schemes in XY spin chains for perfect state transfer. Phys. Rev. A 84, 012307 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Vinet, L., Zhedanov, A.: How to construct spin chains with perfect state transfer. Phys. Rev. A 85, 012323 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Wjcik, A., Luczak, T., Kurzynski, P., Grudka, A., Gdala, T., Bednarska, M.: Unmodulated spin chains as universal quantum wires. Phys. Rev. A 72, 034303 (2005)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Feldman, E.B., Kuznetsova, E.I., Zenchuk, A.I.: High-probability state transfer in spin-1/2 chains: analytical and numerical approaches. Phys. Rev. A 82, 022332 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Lorenzo, S., Apollaro, T.J.G., Sindona, A., Plastina, F.: Quantum-state transfer via resonant tunneling through local-field-induced barriers. Phys. Rev. A 87, 042313 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Pemberton-Ross, P.J., Kay, A.: Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 106, 020503 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Karimipour, V., Sarmadi Rad, M., Asoudeh, M.: Perfect quantum state transfer in two-and three-dimensional structures. Phys. Rev. A 85, 010302(R) (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Behzadi, N., Kazemi Rudsary, S., Ahansaz Salmasi, B.: Perfect routing of quantum information in regular cavity QED networks. Eur. Phys. J. D 67, 252 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Paganelli, S., Lorenzo, S., Apollaro, T.J.G., Plastina, F., Giorgi, G.L.: Routing quantum information in spin chains. Phys. Rev. A 87, 062309 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Korzekwa, K., Machnikowski, P., Horodecki, P.: Quantum-state transfer in spin chains via isolated resonance of terminal spins. Phys. Rev. A 89, 062301 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Liu, Y., Zhou, D.L.: Optimized quantum state transfer through an XY spin chain. Phys. Rev. A 89, 062331 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Zhan, X., Qin, H., Z-h, Bian, Li, J., Xue, P.: Perfect state transfer and efficient quantum routing: a discrete-time quantum-walk approach. Phys. Rev. A 90, 012331 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Qin, W., Wang, C., Zhang, X.: Protected quantum-state transfer in decoherence-free subspaces. Phys. Rev. A 91, 042303 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Ashhab, S.: Quantum state transfer in a disordered one-dimensional lattice. Phys. Rev. A 92, 062305 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Stefanak, M., Skoupy, S.: Perfect state transfer by means of discrete-time quantum walk search algorithms on highly symmetric graphs. Phys. Rev. A 94, 022301 (2016)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Kay, A.: Basics of perfect communication through quantum networks. Phys. Rev. A 84, 022337 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Tsomokos, D.I., Plenio, M.B., de Vega, I., Huelga, S.F.: State transfer in highly connected networks and a quantum Babinet principle. Phys. Rev. A 78, 062310 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Bernasconi, A., Godsil, C., Severini, S.: Quantum networks on cubelike graphs. Phys. Rev. A 78, 052320 (2008)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  26. 26.
    Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Jordan, A.N., Korotkov, A.N.: Uncollapsing the wavefunction by undoing quantum measurements. Contemp. Phys. 51, 125 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Tamir, B., Cohen, E.: Introduction to weak measurements and weak values. Quanta 2, 7 (2013)CrossRefzbMATHGoogle Scholar
  30. 30.
    Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., Oconnell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Kim, Y.-S., Cho, Y.-W., Ra, Y.-S., Kim, Y.-H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Exp. 17, 11978 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Basit, A., Badshah, F., Ali, H., Ge, G.-Q.: Protecting quantum coherence and discord from decoherence of depolarizing noise via weak measurement and measurement reversal. EPL 118, 30002 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)CrossRefGoogle Scholar
  34. 34.
    Zou, W.-J., Li, Y.-H., Wang, S.-C., Cao, Y., Ren, J.-G., Yin, J., Peng, C.-Z., Wang, X.-B., Pan, J.-W.: Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal. Phys. Rev. A 95, 042342 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Yune, J., Hong, K.-H., Lim, H.-T., Lee, J.-C., Kwon, O., Han, S.-W., Kim, Y.-S., Moon, S., Kim, Y.-H.: Quantum discord protection from amplitude damping decoherence. Opt. Exp. 23, 26013 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Behzadi, N., Faizi, E., Heibati, O.: Quantum discord protection of a two-qutrit V-type atomic system from decoherence by partially collapsing measurements. Quantum Inf. Process. 16, 257 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Knuth, D.: The Art of Computer Programming. Addison-Wesley, Boston (1997)zbMATHGoogle Scholar
  38. 38.
    Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process 1, 35 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: in: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of computing, pp. 59-68. ACM (2003)Google Scholar
  40. 40.
    He, Z., Ishizuka, T., Jiangi, D.L.: Dendritic architectures for design of photo-and spin-functional nanomaterials. Polym. J. 39, 889 (2007)CrossRefGoogle Scholar
  41. 41.
    Adronov, A., Frechet, J.M.J.: Light-harvesting dendrimers. Chem. Commun. 18, 1701 (2000)CrossRefGoogle Scholar
  42. 42.
    Bradshaw, D.S., Andrews, D.L.: Mechanisms of light energy harvesting in dendrimers and hyperbranched polymers. Polymers 3, 2053 (2011)CrossRefGoogle Scholar
  43. 43.
    Tufarelli, T., Giovannetti, V.: High-fidelity state transfer in binary-tree spin networks. Phys. Rev. A 79, 022313 (2009)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Wootters, W.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefzbMATHGoogle Scholar
  45. 45.
    Katz, N., Ansmann, M., Bialczak, R.C., Lucero, E., McDermott, R., Neeley, M., Steffen, M., Weig, E.M., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Sillanpää, M.A., Park, J.I., Simmonds, R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Institute for Fundamental SciencesUniversity of TabrizTabrizIran
  2. 2.Physics DepartmentAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations