Skip to main content
Log in

State-independent uncertainty relations and entanglement detection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The uncertainty relation is one of the key ingredients of quantum theory. Despite the great efforts devoted to this subject, most of the variance-based uncertainty relations are state-dependent and suffering from the triviality problem of zero lower bounds. Here we develop a method to get uncertainty relations with state-independent lower bounds. The method works by exploring the eigenvalues of a Hermitian matrix composed by Bloch vectors of incompatible observables and is applicable for both pure and mixed states and for arbitrary number of N-dimensional observables. The uncertainty relation for the incompatible observables can be explained by geometric relations related to the parallel postulate and the inequalities in Horn’s conjecture on Hermitian matrix sum. Practical entanglement criteria are also presented based on the derived uncertainty relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Busch, P., Heinonen, T., Lahti, P.J.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155 (2007)

    Article  ADS  Google Scholar 

  2. Hofmann, H.F., Takeuchi, S.: Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A. 68, 032103 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. Gühne, O.: Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 92, 117903 (2004)

    Article  ADS  Google Scholar 

  4. Fuchs, C.A., Peres, A.: Quantum-state disturbance versus information gain: uncertainty relations for quantum information. Phys. Rev. A. 53, 2038 (1996)

    Article  ADS  Google Scholar 

  5. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)

    Article  ADS  MATH  Google Scholar 

  6. Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Zeitschrift für Physik 44, 326 (1927)

    Article  ADS  MATH  Google Scholar 

  7. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  8. Schrödinger, E.: Situngsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische. Klasse. 14, 296 (1930)

    Google Scholar 

  9. Maccone, L., Pati, A.K.: Stronger uncertainty relations for all incompatible observables. Phys. Rev. Lett. 113, 260401 (2014)

    Article  ADS  Google Scholar 

  10. Song, Q.-C., Qiao, C.-F.: Stronger Schrödinger-like uncertainty relations. Phys. Lett. A. 380, 2925 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Song, Q.-C., Qiao, C.-F.: Uncertainty equalities and uncertainty relation in weak measurement. arXiv:1505.02233 (2015)

  12. Chen, B., Fei, S.-M.: Sum uncertainty relations for arbitrary N incompatible observables. Sci. Rep. 5, 14238 (2015)

    Article  ADS  Google Scholar 

  13. Bagchi, S., Pati, A.K.: Uncertainty relations for general unitary operators. Phys. Rev. A. 94, 042104 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Xiao, Y.-L., Jing, N.-H., Li-Jost, X.-Q., Fei, S.-M.: Weighted uncertainty relations. Sci. Rep. 6, 23201 (2016)

    Article  ADS  Google Scholar 

  15. Chen, B., Cao, N.-P., Fei, S.-M., Long, G.-L.: Variance-based uncertainty relations for incompatible observables. Quantum Inf. Process. 15, 3909 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Song, Q.-C., Li, J.-L., Peng, G.-X., Qiao, C.-F.: A stronger multi-observable uncertainty relation. Sci. Rep. 7, 44764 (2017)

    Article  ADS  Google Scholar 

  17. Qin, H.-H., Fei, S.-M., Li-Jost, X.-Q.: Multi-observable uncertainty relations in product form of variances. Sci. Rep. 6, 31192 (2016)

    Article  ADS  Google Scholar 

  18. Chen, B., Fei, S.-M., Long, G.-L.: Sum uncertainty relations based on Wigner–Yanase skew information. Quantum Inf. Process. 15, 2639 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Mondal, D., Bagchi, S., Pati, A.K.: Tighter uncertainty and reverse uncertainty relations. Phys. Rev. A. 95, 052117 (2017)

    Article  ADS  Google Scholar 

  20. Zhang, J., Zhang, Y., Yu, C.-S.: Stronger uncertainty relations with improvable upper and lower bounds. Quantum Inf. Process. 16, 131 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Park, Y.M.: Improvement of uncertainty relations for mixed states. J. Math. Phys. 46, 042109 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Li, J.-L., Qiao, C.-F.: Reformulating the quantum uncertainty relation. Sci. Rep. 5, 12708 (2015)

    Article  ADS  Google Scholar 

  23. Abbott, A.A., Alzieu, P., Hall, M.J.W., Branciard, C.: Tight state-independent uncertainty relations for qubits. Mathematics 4, 8 (2016)

    Article  MATH  Google Scholar 

  24. Schwonnek, R., Dammeier, L., Werner, R.F.: State-independent uncertainty relations and entanglement detection in noisy systems. Phys. Rev. Lett. 119, 170404 (2017)

    Article  ADS  Google Scholar 

  25. Dammeier, L., Schwonnek, R., Werner, R.F.: Uncertainty relations for angular momentum. New J. Phys. 17, 093046 (2015)

    Article  ADS  Google Scholar 

  26. Horn, A.: Eigenvalues of sums of Hermitian matrices. Pac. J. Math. 12, 225 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fulton, W.: Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Am. Math. Soc. 37, 209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hioe, F.T., Eberly, J.H.: \(N\)-Level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 47, 838 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  29. Kimura, G.: The Bloch vector for \(N\)-level systems. Phys. Lett. A 314, 339 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Byrd, M.S., Khaneja, N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A. 68, 062322 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. Hofmann, H.F.: Uncertainty characteristics of generalized quantum measurements. Phys. Rev. A. 67, 022106 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. Li, J.-L., Qiao, C.-F.: A necessary and sufficient criterion for the separability of quantum state. Sci. Rep. 8, 1442 (2018)

    Article  ADS  Google Scholar 

  33. de Vicente, J.I.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Rudolph, O.: Further results on the cross norm criterion for separability. Quantum Inf. Process. 4, 219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, K., Wu, L.-A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3, 193 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Gühne, O., Hyllus, P., Gittsovich, O., Eiert, J.: Covariance matrices and the separablity problem. Phys. Rev. Lett. 99, 130504 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, J.-L., Qiao, C.-F.: Separable decompositions of bipartite mixed states. Quantum Inf. Process. arXiv: 1708.05336 (2017)

  38. Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Science and Technology of the People’s Republic of China(2015CB856703); by the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No.XDB23030100; and by the National Natural Science Foundation of China(NSFC) under the Grants 11375200 and 11635009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-Feng Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, C., Li, JL. & Qiao, CF. State-independent uncertainty relations and entanglement detection. Quantum Inf Process 17, 84 (2018). https://doi.org/10.1007/s11128-018-1855-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1855-4

Keywords

Navigation