Time-invariant discord: high temperature limit and initial environmental correlations

  • F. T. Tabesh
  • G. Karpat
  • S. Maniscalco
  • S. Salimi
  • A. S. Khorashad


We present a thorough investigation of the phenomena of frozen and time-invariant quantum discord for two-qubit systems independently interacting with local reservoirs. Our work takes into account several significant effects present in decoherence models, which have not been yet explored in the context of time-invariant quantum discord, but which in fact must be typically considered in almost all realistic models. Firstly, we study the combined influence of dephasing, dissipation and heating reservoirs at finite temperature. Contrarily to previous claims in the literature, we show the existence of time-invariant discord at high temperature limit in the weak coupling regime and also examine the effect of thermal photons on the dynamical behavior of frozen discord. Secondly, we explore the consequences of having initial correlations between the dephasing reservoirs. We demonstrate in detail how the time-invariant discord is modified depending on the relevant system parameters such as the strength of the initial amount of entanglement between the reservoirs.


Time-invariant discord Control of discord High temperature limit Open quantum systems 



This work has been supported by the University of Kurdistan. F. T. T. thanks R. Yousefjani for the useful discussions. G. K. is grateful to Sao Paulo Research Foundation (FAPESP) for the support given under the Grant Number 2012/18558-5. S. M. also acknowledges financial support from the Academy of Finland (Project No. 287750).


  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Operational interpretations of quantum discord. Phys. Rev. A. 83(3), 032324 (2011)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Streltsov, A., Kampermann, H., Bruss, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108(25), 250501 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Chuan, T.K., Maillard, H., Modo, K., Paterek, T., Paternostro, M., Pianai, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109(7), 070501 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Dakic, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)CrossRefGoogle Scholar
  7. 7.
    Boixo, S., Aolita, L., Cavalcanti, D., Modi, K., Winter, A.: Quantum locking of classical correlations and quantum discord of classical-quantum states. Int. J Quantum Inf. 9, 1643–1651 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cornélio, M.F., de Oliveira, M.C., Fanchni, F.F.: Entanglement irreversibility from quantum discord and quantum deficit. Phys. Rev. Lett. 107(2), 020502 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  11. 11.
    Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58(4), 2733 (1998)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Addis, C., Karpat, G., Maniscalco, S.: Time-invariant discord in dynamically decoupled systems. Phys. Rev. A 92(6), 062109 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104(20), 200401 (2010)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Xu, J.-S., Xu, X.-Y., Li, C.-F., Zhang, C.-J., Zou, X.-B., Guo, G.-C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)Google Scholar
  16. 16.
    Auccaise, R., Celeri, L.C., Soares-Pinto, D.O., de Azevedo, E.R., Maziero, J., Souza, A.M., Bonagamba, T.J., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Environment-induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107(14), 140403 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Mazzola, L., Piilo, J., Maniscalco, S.: Frozen discord in non-Markovian dephasing channels. Int. J. Quantum Inf. 9, 981–991 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Haikka, P., Johnson, T.H., Maniscalco, S.: Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A. 87(1), 010103(R) (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6905 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett 88(1), 017901 (2001)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A. 81(5), 052107 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Huang, Y.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88(1), 014302 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Smirne, A., Kolodynski, J., Huelga, S.F., Demkowicz-Dobrzanski, R.: Ultimate precision limits for noisy frequency estimation. Phys. Rev. Lett. 116(12), 120801 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Lankinen, J., Lyyra, H., Sokolov, B., Teittinen, J., Ziaei, B., Maniscalco, S.: Complete positivity, finite-temperature effects, and additivity of noise for time-local qubit dynamics. Phys. Rev. A. 93(5), 052103 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Li, J.-G., Zou, J., Shao, B.: Non-Markovianity of the damped Jaynes–Cummings model with detuning. Phys. Rev. A 81(6), 062124 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Breuer, H.-P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103(21), 210401 (2009)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Luczka, J.: Spin in contact with thermostat: exact reduced dynamics. Phys. A 167, 919–934 (1990)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Palma, G.M., Suominen, K.-A., Ekert, A.-K.: Quantum computers and dissipation. Proc. R. Soc. London, Ser. A 452, 567–584 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Reina, J.H., Quiroga, L., Johnson, N.F.: Decoherence of quantum registers. Phys. Rev. A 65(3), 032326 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Wißmann, S., Breuer, H.-P.: Role of entanglement for nonlocal memory effects. Phys. Rev. A 90(3), 032117 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Giedke, G., Wolf, M.M., Krüger, O., Werner, R.F., Cirac, J.I.: Entanglement of formation for symmetric Gaussian states. Phys. Rev. Lett. 91(10), 107901 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105(2), 020503 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Adesso, G., Datta, A.: Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105(3), 030501 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • F. T. Tabesh
    • 1
    • 2
  • G. Karpat
    • 3
  • S. Maniscalco
    • 2
    • 4
  • S. Salimi
    • 1
  • A. S. Khorashad
    • 1
  1. 1.Department of PhysicsUniversity of KurdistanSanandajIran
  2. 2.Turku Center for Quantum Physics, Department of Physics and AstronomyUniversity of TurkuTurkuFinland
  3. 3.Faculty of Arts and Sciences, Department of PhysicsIzmir University of EconomicsIzmirTurkey
  4. 4.Center for Quantum Engineering, Department of Applied PhysicsAalto University School of ScienceAaltoFinland

Personalised recommendations