Concurrence of three Jaynes–Cummings systems

  • Wen-Chao Qiang
  • Guo-Hua Sun
  • Qian Dong
  • Oscar Camacho-Nieto
  • Shi-Hai Dong
Article
  • 79 Downloads

Abstract

We apply genuine multipartite concurrence to investigate entanglement properties of three Jaynes–Cummings systems. Three atoms are initially put in GHZ-like state and locally interact with three independent cavities, respectively. We present analytical concurrence expressions for various subsystems including three-atom, three-cavity and some atom-cavity mixed systems. We also examine the global system and illustrate the evolution of its concurrence. Except for the sudden death of entanglement, we find for some initial entanglement parameter \(\theta \), the concurrence of the global system may maintain unchanged in some time intervals.

Keywords

Jaynes–Cummings model Genuine multipartite concurrence X state 

Notes

Acknowledgements

We would like to thank the editor and kind referees for their invaluable suggestions, which improved the manuscript greatly. This work is supported in part by 20170938-SIP, IPN, Mexico and also supported partially by the CONACYT project under Grant No. 288856-CB-2016.

References

  1. 1.
    Vedral, V.: Modern Foundations of Quantum Optics. Imperial College Press, London (2005)CrossRefMATHGoogle Scholar
  2. 2.
    Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)CrossRefGoogle Scholar
  3. 3.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Yönaç, M., Yu, T., Eberly, J.H.: Sudden death of entanglement of two Jaynes–Cummings atoms. J. Phys. B At. Mol. Opt. Phys. 39, S621–S625 (2006)CrossRefGoogle Scholar
  5. 5.
    Yönaç, M., Yu, T., Eberly, J.H.: Pairwise concurrence dynamics: a four-qubit model. J. Phys. B At. Mol. Opt. Phys. 40, S45–S59 (2007)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Groves, E., Clader, B.D., Eberly, J.H.: Jaynes–Cummings theory out of the box. J. Phys. B At. Mol. Opt. Phys. 46, 224005 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Li, Z.J., Li, J.Q., Jin, Y.H., Nie, Y.H.: Time evolution and transfer of entanglement between an isolated atom and a Jaynes–Cummings atom. J. Phys. B At. Mol. Opt. Phys. 40, 3401–3411 (2007)CrossRefGoogle Scholar
  8. 8.
    Jiang, L.N., Zhang, J.L., Ma, J., Yu, S.Y., Han, Q., Li, B.: Entanglement dynamics between two atoms within different W-like initial states. Int. J. Theor. Phys. 53, 942–951 (2014)CrossRefMATHGoogle Scholar
  9. 9.
    Man, Z.X., Xia, Y.J., An, N.B.: Entanglement dynamics for a six-qubit model in cavity QED. J. Phys. B At. Mol. Opt. Phys. 41, 155501 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Qiang, W.C., Zhang, L., Zhang, H.P.: Geometric quantum discord of a Jaynes–Cummings atom and an isolated atom. J. Phys. B At. Mol. Opt. Phys. 48, 245503 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, D., Huang, A.J., Hoehn, R.D., Ming, F., Sun, W.Y., Shi, J.D., Ye, L., Kais, S.: Entropic uncertainty relations for Markovian and Non-Markovian processes under a structured bosonic reservoir. Sci. Rep. 7, 1066 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Sun, W.Y., Wang, D., Ding, Z.Y., Ye, L.: Recovering the lost steerability of quantum states within Non-Markovian environments by utilizing quantum partially collapsing measurements. arXiv:1709.05922v2 [quant-ph]
  13. 13.
    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Rungta, P., Buzék, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Pope, D.T., Milburn, G.J.: Multipartite entanglement and quantum state exchange. Phys. Rev. A 67, 052107 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev. Lett. 93, 230501 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Aolita, L.: Measuring multipartite concurrence with a single factorizable observable. Phys. Rev. Lett. 97, 050501 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Love, P.J., van den Brink, A., Smirnov, A., Amin, M., Grajcar, M., Ilichev, E., Izmalkov, A., Zagoskin, A.: A characterization of global entanglement. Quantum Inf. Process. 6, 187–195 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Piani, M., Horodecki, P., Horodecki, R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100, 090502 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Huber, M., Mintert, F.: Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104, 210501 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Ma, Z.H., Chen, Z.H., Chen, J.L., Spengler, C., Gabriel, A., Huber, M.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Chen, Z.H., Ma, Z.H., Chen, J.L., Severini, S.: Improved lower bounds on genuine-multipartite-entanglement concurrence. Phys. Rev. A 85, 062320 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Hashemi Rafsanjani, S.M., Huber, M., Broadbent, C.J., Eberly, J.H.: Genuinely multipartite concurrence of N-qubit X matrices. Phys. Rev. A 86, 062303 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Cornelio, M.F.: Multipartite monogamy of the concurrence. Phys. Rev. A 87, 032330 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Li, M., Fei, S.M., Li-Jost, X., Fan, H.: Genuine multipartite entanglement detection and lower bound of multipartite concurrence. Phys. Rev. A 92, 062338 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Majtey, A.P., Bouvrie, P.A., Valdés-Hernández, A., Plastino, A.R.: Multipartite concurrence for identical-fermion systems. Phys. Rev. A 93, 032335 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Sun, W.Y., Wang, D., Yang, J., Ye, L.: Enhancement of multipartite entanglement in an open system under non-inertial frames. Quantum Inf. Process. 16, 90 (2017)ADSCrossRefMATHGoogle Scholar
  29. 29.
    Sun, W.Y., Wang, D., Shi, J.D., Ye, L.: Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs. Sci. Rep. 7, 39651 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wen-Chao Qiang
    • 1
  • Guo-Hua Sun
    • 2
  • Qian Dong
    • 3
  • Oscar Camacho-Nieto
    • 3
  • Shi-Hai Dong
    • 3
  1. 1.Faculty of ScienceXi’an University of Architecture and TechnologyXi’anChina
  2. 2.Catedrática CONACYT, Centro de Investigación en Computación, Instituto Politécnico NacionalMexico CityMexico
  3. 3.Laboratorio de Información CuánticaCIDETEC, Instituto Politécnico Nacional, UPALMMexico CityMexico

Personalised recommendations