Control of single-photon routing in a T-shaped waveguide by another atom

  • Jin-Song Huang
  • Jing-Wen Wang
  • Yan Wang
  • Yan-Ling Li
  • You-Wen Huang


Quantum routers with a high routing rate of much more than 0.5 are of great importance for quantum networks. We provide a scheme to perform bidirectional high routing-rate transfer in a T-shaped coupled-resonator waveguide (CRW), which extends a recent unidirectional scheme proposed by Lu et al. (Opt Express 23:22955, 2015). By locating an extra two-level atom in the infinite CRW channel of the T-shaped CRW with a three-level system, an effective potential is generated. Our numerical results show that high routing capability from the infinite CRW channel to the semi-infinite channel can be achieved, and routing capability from the semi-infinite CRW channel to the infinite channel can also be significantly enhanced, with the help of the effective potential. Therefore, the proposed double-atom configuration could be utilized as a bidirectional quantum routing controller to implement high transfer rate routing of single photons.


Quantum routing Scattering theory Optical waveguide 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11247032, 11365011), by the Natural Science Foundation of Jiangxi (Grant No. 20151BAB202012), and by the Scientific Research Foundation of Jiangxi University of Science and Technology (Grant No. NSFJ2014-K18).


  1. 1.
    Kimble, H.J.: The quantum internet. Nature (London) 453, 1023–1030 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102(8), 083601 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Xia, K., Twamley, J.: All-optical switching and router via the direct quantum control of coupling between cavity modes. Phys. Rev. X 3(3), 031013 (2013)Google Scholar
  4. 4.
    Shomroni, I., Rosenblum, S., Lovsky, Y., Brechler, O., Guendelman, G., Dayan, B.: All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345(6199), 903–906 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Hu, C.Y.: Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors. Phys. Rev. B 94(24), 245307 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Hu, C.Y.: Photonic transistor and router using a single quantum-dotconfined spin in a single-sided optical microcavity. Sci. Rep. 7, 45582 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Cao, C., Duan, Y.W., Chen, X., Zhang, R., Wang, T.J., Wang, C.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25(15), 16931 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107(7), 073601 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Agarwal, G.S., Huang, S.: Optomechanical systems as single-photon routers. Phys. Rev. A 85(2), 021801 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Li, X., Zhang, W.Z., Xiong, B., Zhou, L.: Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci. Rep. 6, 39343 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Ma, X.S., Zotter, S., Kofler, J., Jennewein, T., Zeilinger, A.: Experimental generation of single photons via active multiplexing. Phys. Rev. A 83(4), 043814 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Lemr, K., Černoch, A.: Linear-optical programmable quantum router. Opt. Commun. 300, 282–285 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Yan, G.A., Cai, Q.Y., Chen, A.X.: Information-holding quantum router of single photons using natural atom. Eur. Phys. J. D 70, 93 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Yan, G.A., Qiao, H.X., Lu, H., Chen, A.X.: Quantum information-holding single-photon router based on spontaneous emission. Sci. China Phys. Mech. Astron. 60(9), 090311 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Bartkiewicz, K., Černoch, A., Lemr, K.: Using quantum routers to implement quantum message authentication and Bell-state manipulation. Phys. Rev. A 90(2), 022335 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Yuan, X.X., Ma, J.J., Hou, P.Y., Chang, X.Y., Zu, C., Duan, L.M.: Experimental demonstration of a quantum router. Sci. Rep. 5, 12452 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Shen, J.T., Fan, S.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30(15), 2001–2003 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Shen, J.T., Fan, S.: Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95(21), 213001 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Chang, D.E., Sorensen, A.S., Demler, E.A., Lukin, M.D.: A single-photon transistor using nano-scale surface plasmons. Nat. Phys. 3, 807–812 (2007)CrossRefGoogle Scholar
  20. 20.
    Shen, J.T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79(2), 023837 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101(10), 100501 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Zhou, L., Dong, H., Sun, C.P., Nori, F.: Quantum supercavity with atomic mirrors. Phys. Rev. A 78(6), 063827 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Mazzarella, L., Ticozzi, F., Sergienko, A.V., Vallone, G., Villoresi, P.: Asymmetric architecture for heralded single-photon sources. Phys. Rev. A 88(2), 023848 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Xiao, H.L., Zhang, Z.S.: Subcarrier multiplexing multiple-input multiple-output quantum key distribution with orthogonal quantum states. Quantum Inf. Process. 16(13), 1–18 (2017)ADSzbMATHGoogle Scholar
  25. 25.
    Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111(10), 103604 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89(1), 013805 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Yan, W.B., Liu, B., Zhou, L., Fan, H.: All-optical router at single-photon level by interference. Europhys. Lett. 111, 64005 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Yan, W.B., Fan, H.: Single-photon quantum router with multiple output ports. Sci. Rep. 4, 4820 (2014)CrossRefGoogle Scholar
  29. 29.
    Lu, J., Wang, Z.H., Zhou, L.: T-shaped single-photon router. Opt. Express 23(18), 22955–22962 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Lemr, K., Bartkiewicz, K., Černoch, A., Soubusta, J.: Resource-efficient linear-optical quantum router. Phys. Rev. A 87(6), 062333 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Li, X.M., Wei, L.F.: Designable single-photon quantum routings with atomic mirrors. Phys. Rev. A 92(6), 063836 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Li, Y., Bruder, C., Sun, C.P.: Generalized Stern-Gerlach effect for chiral molecules. Phys. Rev. Lett. 99(13), 130403 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95(8), 087001 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69(6), 062320 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75(3), 032329 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Peropadre, B., Forn-Díaz, P., Solano, E., García-Ripoll, J.J.: Switchable ultrastrong coupling in circuit QED. Phys. Rev. Lett. 105(2), 023601 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Romero, G., Ballester, D., Wang, Y.M., Scarani, V., Solano, E.: Ultrafast quantum gates in circuit QED. Phys. Rev. Lett. 108(12), 120501 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Richer, S., DiVincenzo, D.: Circuit design implementing longitudinal coupling: a scalable scheme for superconducting qubits. Phys. Rev. B 93(13), 134501 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Richer, S., Maleeva, N., Skacel, S.T., Pop, I.M., DiVincenzo, D.: Inductively shunted transmon qubit with tunable transverse and longitudinal coupling Susanne. Phys. Rev. B 96(17), 174520 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Chen, W., Chen, G.Y., Chen, Y.N.: Coherent transport of nanowire surface plasmons coupled to quantum dots. Opt. Express 18(10), 10360 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Notomi, M., Kuramochi, E., Tanabe, T.: Large-scale arrays of ultrahigh-Q coupled nanocavities. Nat. Photon. 2, 741–747 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information EngineeringJiangxi University of Science and TechnologyGanzhouChina
  2. 2.School of Foreign StudiesJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations