Skip to main content
Log in

Capacity of a quantum memory channel correlated by matrix product states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the capacity of a quantum channel where channel acts like controlled phase gate with the control being provided by a one-dimensional quantum spin chain environment. Due to the correlations in the spin chain, we get a quantum channel with memory. We derive formulas for the quantum capacity of this channel when the spin state is a matrix product state. Particularly, we derive exact formulas for the capacity of the quantum memory channel when the environment state is the ground state of the AKLT model and the Majumdar–Ghosh model. We find that the behavior of the capacity for the range of the parameters is analytic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bayat, A., Burgarth, D., Mancini, S., Bose, S.: Memory effects in spin-chain channels for information transmission. Phys. Rev. A 77, 050306 (2008)

    Article  ADS  Google Scholar 

  2. Benenti, G., D’Arrigo, A., Falci, G.: Enhancement of transmission rates in quantum memory channels with damping. Phys. Rev. Lett. 103, 020502 (2009)

    Article  ADS  Google Scholar 

  3. Kretschmann, D., Werner, R.: Quantum channels with memory. Phys. Rev. A 72, 062323 (2005)

    Article  ADS  Google Scholar 

  4. Caruso, F., Giovanetti, V., Lupo, C., Mancini, S.: Quantum channels with memory effects. Rev. Mod. Phys. 86, 1203 (2014)

    Article  ADS  Google Scholar 

  5. Plenio, M., Virmani, S.: Spin chains and channels with memory. Phys. Rev. Lett. 99, 120504 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Plenio, M., Virmani, S.: Many-body physics and the capacity of quantum channels with memory. New J. Phys. 10, 043032 (2008)

    Article  Google Scholar 

  7. Fannes, M., Nachtergaele, B., Werner, R.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144–3, 443–490 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Verstraete, F., Cirac, J.: Valence bond states for quantum computation. Phys. Rev. A 70, 060302(R) (2004)

    Article  ADS  Google Scholar 

  9. Orus, R.: A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–121 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Majumdar, C., Ghosh, D.: On next nearest-neighbour interaction in linear chain. J. Math. Phys. 10, 1388–1402 (1969)

    Article  ADS  Google Scholar 

  11. Affleck, A., Kennedy, T., Lieb, E., Tasaki, H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477–528 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  12. Deng, X., Porras, D., Cirac, J.: Effective spin quantum phases in systems of trapped ion. Phys. Rev. A 72, 063407 (2005)

    Article  ADS  Google Scholar 

  13. Lewenstein, M., Sanpera, A., Ahufinger, V.: Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems. Oxford University Press, Oxford (2012)

    Book  MATH  Google Scholar 

  14. Korepin, V., Ying, X.: Entanglement in valence bond solid states. Int. J. Mod. Phys. B 24(11), 1361–1440 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Benenti, G., DArrigo, A., Falci, G.: Quantum capacity of dephasing channels with memory. New J. Phys. 9, 310 (2007)

    Article  Google Scholar 

  16. Lemos, G., Benenti, G.: Role of chaos in quantum communication through a dynamical dephasing channel. Phys. Rev. A 81, 062331 (2010)

    Article  ADS  Google Scholar 

  17. Arshed, N., Toor, A., Lidar, D.: Channel capacities of an exactly solvable spin-star system. Phys. Rev. A 81, 062353 (2010)

    Article  ADS  Google Scholar 

  18. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  19. Marchand, K., Mulherkar, J., Nachtergaele, B.: Entropy rate calculations using algebraic measures. In: Proc. IEEE Int. Symp. on Inf. Theory (2012)

  20. Accardi, L., Frigerio, A.: Markovian cocycles. Proc. R. Irish Acad. 83, 251–263 (1983)

    MathSciNet  MATH  Google Scholar 

  21. Kennedy, T., Tasaki, H.: Hidden symmetry breaking and the Haldane phase in S = 1 quantum spin chains. Commun. Math Phys. 147, 431–484 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Stephen, D., Wang, D., Prakash, A., Wei, T., Raussendorf, R.: Computational power of symmetry-protected topological phases. Phys. Rev. Lett. 119, 010504 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaideep Mulherkar.

A Proof of Lemma 3

A Proof of Lemma 3

The lemma can be easily verified for the cases when \(n=2\), and \(n=3\). So we prove for the case \(n \ge 4\) with \(\{A_1,A_2\}\) as in Eq. (8).

Proof for values

The proof is based on the observation that, for \(n \ge 4\),

$$\begin{aligned}&\{O_1O_2 \cdots O_nO_n^\dagger \cdots O_2^\dagger O_1^\dagger : O_i \in \{A_1, A_2\}, 1 \le i \le n \} \\&\quad =\left\{ \text {diag}(0,0,0), \text {diag}\Big (g^{\Big \lfloor \frac{n}{2} \Big \rfloor }, 0, 0\Big ), \right. \\&\qquad \text {diag}\Big (g^i(1-g)^{\Big \lfloor \frac{n}{2}\Big \rfloor - i}, 0, 0\Big ): 1 \le i \le \Big \lfloor \frac{n}{2} \Big \rfloor - 1,\\&\qquad \text {diag}\Big ((1-g)^{\Big \lfloor \frac{n}{2}\Big \rfloor }, g^{\Big \lceil \frac{n}{2} \Big \rceil }, 0\Big ), \\&\qquad \text {diag}\Big (0, g^i(1-g)^{\Big \lceil \frac{n}{2}\Big \rceil - i}, 0\Big ): 1 \le i \le \Big \lceil \frac{n}{2} \Big \rceil - 1,\\&\qquad \text {diag}\Big (0, (1-g)^{\Big \lceil \frac{n}{2} \Big \rceil }, g^{\Big \lfloor \frac{n}{2}\Big \rfloor }\Big ), \\&\qquad \text {diag}\Big (0,0,g^{\Big \lfloor \frac{n}{2}\Big \rfloor - i}(1-g)^i\Big ): 1 \le i \le \Big \lfloor \frac{n}{2}\Big \rfloor - 1, \\&\qquad \left. \text {diag}\Big (0,0, (1-g)^{\Big \lfloor \frac{n}{2}\Big \rfloor }\Big ) \right\} \end{aligned}$$

Consequently, for \(n \ge 4\),

$$\begin{aligned}&\{\text {Tr}(\rho O_1\cdots O_nO_n^\dagger \cdots O_1^\dagger ): O_i \in \{A_1, A_2\}, 1 \le i \le n \} \\&\quad =\left\{ 0, \displaystyle \frac{(1-g)g^{\left\lfloor \frac{n}{2}\right\rfloor }}{2}, \displaystyle \frac{g^i(1-g)^{\left\lfloor \frac{n}{2}\right\rfloor - i + 1}}{2}: 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1,\right. \\&\qquad \displaystyle \frac{(1-g)^{\left\lfloor \frac{n}{2}\right\rfloor + 1} +g^{\left\lceil \frac{n}{2}\right\rceil }}{2}, \displaystyle \frac{g^i(1-g)^{\left\lceil \frac{n}{2}\right\rceil - i}}{2}: 1 \le i \le \left\lceil \frac{n}{2} \right\rceil - 1, \\&\qquad \displaystyle \frac{(1-g)^{\left\lceil \frac{n}{2}\right\rceil }+g^{ \left\lfloor \frac{n}{2}\right\rfloor + 1}}{2}, \displaystyle \frac{g^{ \left\lfloor \frac{n}{2}\right\rfloor - i +1}(1-g)^i}{2}: 1 \le i \le \left\lfloor \frac{n}{2}\right\rfloor - 1, \\&\left. \qquad \displaystyle \frac{g(1-g)^{\left\lfloor \frac{n}{2}\right\rfloor }}{2} \right\} \end{aligned}$$

Now, the nonzero values for \(\text {Tr}(\rho O_1 \cdots O_nO_n^\dagger \cdots O_1^\dagger )\) can be inferred as stated in the lemma. The validity of the observation can be established by mathematical induction on n. For \(n=4\), the observation can be verified explicitly. Now, assuming that the observation is valid for an arbitrary integer \(k \ge 4\), we prove that the observation holds for \(k+1\). Let

$$\begin{aligned} \begin{array}{lll} Z_k &{} \hbox {denote} &{} \text {diag}_{_{k \times k}} (0,0,0), \\ B_k &{} \hbox {denote} &{} \text {diag}_{_{k \times k}} \left( g^{\left\lfloor \frac{k}{2} \right\rfloor }, 0, 0\right) , \\ C_k(i) &{} \hbox {denote} &{} \text {diag}_{_{k \times k}} \left( g^i(1-g)^{\left\lfloor \frac{k}{2}\right\rfloor - i}, 0, 0\right) , \\ D_k &{} \hbox {denote} &{} \text {diag}_{_{k \times k}} \left( (1-g)^{\left\lfloor \frac{k}{2}\right\rfloor }\right) , \\ E_k(i) &{} \hbox {denote} &{} \text {diag}_{_{k \times k}} \left( 0, g^i(1-g)^{\left\lceil \frac{k}{2}\right\rceil - i}, 0\right) , \\ F_k &{} \hbox {denote} &{} \text {diag}_{_{k \times k}} \left( 0, (1-g)^{\left\lceil \frac{k}{2} \right\rceil }, g^{\left\lfloor \frac{k}{2}\right\rfloor }\right) , \\ G_k(i) &{} \hbox {denote} &{} \text {diag}_{_{k \times k}} \left( 0,0,g^{\left\lfloor \frac{k}{2}\right\rfloor - i}(1-g)^i\right) , \\ \hbox {and}\; H_k &{} \hbox {denote} &{} \text {diag}_{_{k \times k}} \left( 0,0, (1-g)^{\left\lfloor \frac{k}{2}\right\rfloor }\right) . \end{array} \end{aligned}$$

By induction hypothesis

$$\begin{aligned}&\left\{ O_1 \cdots O_kO_k^\dagger \cdots O_1^\dagger : O_i \in \{A_1, A_2\}, 1 \le i \le k\right\} \\&\quad =\left\{ Z_k, B_k, C_k(i): 1 \le i \le \left\lfloor \frac{k}{2} \right\rfloor - 1,D_k,\right. \\&\left. \qquad E_k(i):1 \le i \le \left\lceil \frac{k}{2} \right\rceil - 1, F_k, G_k(i):1 \le i \le \left\lfloor \frac{k}{2}\right\rfloor - 1, H_k\right\} . \end{aligned}$$

So,

$$\begin{aligned}&\{A_1O_1 \cdots O_kO_k^\dagger \cdots O_1^\dagger A_1^\dagger , A_2O_1 \cdots O_kO_k^\dagger \cdots O_1^\dagger A_2^\dagger :\\&\qquad O_i \in \{A_1, A_2\}, 1 \le i \le k \} \\&\quad =\left\{ A_1Z_kA_1^\dagger , A_1B_kA_1^\dagger , A_1C_k(i)A_1^\dagger : 1 \le i \le \left\lfloor \frac{k}{2} \right\rfloor - 1, \right. \\&\qquad A_1D_kA_1^\dagger , A_1E_k(i)A_1^\dagger :1 \le i \le \left\lceil \frac{k}{2} \right\rceil - 1, \\&\qquad A_1F_kA_1^\dagger , A_1G_k(i)A_1^\dagger :1 \le i \le \left\lfloor \frac{k}{2}\right\rfloor - 1, \\&\qquad A_1H_kA_1^\dagger , A_2Z_kA_2^\dagger , A_2B_kA_2^\dagger , A_2C_k(i)A_2^\dagger : 1 \le i \le \left\lfloor \frac{k}{2} \right\rfloor - 1, \\&\qquad A_2D_kA_2^\dagger , A_2E_k(i)A_2^\dagger :1 \le i \le \left\lceil \frac{k}{2} \right\rceil - 1, \\&\left. \qquad A_2F_kA_2^\dagger , A_2G_k(i)A_2^\dagger :1 \le i \le \left\lfloor \frac{k}{2}\right\rfloor - 1, A_2H_kA_2^\dagger \right\} \end{aligned}$$

Now, since

$$\begin{aligned}&A_1Z_kA_1^{\dagger }, A_1B_kA_1^{\dagger }, A_1C_k(i)A_1^{\dagger },A_2Z_kA_2^{\dagger }, A_2G_k(i)A_2^{\dagger }, \nonumber \\&A_2H_kA_2^{\dagger } \quad \text {are all}\, Z_{k+1},\, \text {for} \, 1 \le i \le \left\lfloor \frac{k}{2} \right\rfloor -1, \end{aligned}$$
(25)
$$\begin{aligned}&A_1D_kA_1^{\dagger } = B_{k+1}, \end{aligned}$$
(26)
$$\begin{aligned}&A_1 E_k(i) A_1^{\dagger } = C_{k+1}(i)\, \text {for}\, 1 \le i \le \left\lfloor \frac{k+1}{2} \right\rfloor - 1, \end{aligned}$$
(27)
$$\begin{aligned}&A_1 F_k A_1^{\dagger } = D_{k+1},\end{aligned}$$
(28)
$$\begin{aligned}&A_1H_kA_1^{\dagger }, A_2C_k(1)A_2^{\dagger }\, \text {are} \, E_{k+1}(1),\end{aligned}$$
(29)
$$\begin{aligned}&A_1G_k \left( \left\lfloor \frac{k}{2} \right\rfloor -i+1\right) A_1^{\dagger }, A_2 C_k(i)A_2^{\dagger } \, \text {are}\, E_{k+1}(i)\nonumber \\&\text {for} \, 2 \le i \le \left\lceil \frac{k+1}{2} \right\rceil -2, \end{aligned}$$
(30)
$$\begin{aligned}&A_1G_k(1)A_1^{\dagger }, A_2B_kA_2^{\dagger }\, \text {are}\, E_{k+1}\left( \left\lceil \frac{k+1}{2} \right\rceil - 1\right) ,\end{aligned}$$
(31)
$$\begin{aligned}&A_2 D_kA_2^{\dagger } = F_{k+1},\end{aligned}$$
(32)
$$\begin{aligned}&A_2 E_k(i)A_2^{\dagger }\; \hbox {is}\; G_{k+1}(i)\, \text {for}\, 1 \le i \le \left\lfloor \frac{k+1}{2} \right\rfloor - 1, \end{aligned}$$
(33)
$$\begin{aligned}&A_2F_kA_2^{\dagger } = H_{k+1} \end{aligned}$$
(34)

we get

$$\begin{aligned}&\{A_1O_1 \cdots O_kO_k^\dagger \cdots O_1^\dagger A_1^\dagger , A_2O_1 \cdots O_kO_k^\dagger \cdots O_1^\dagger A_2^\dagger : \\&\qquad O_i \in \{A_1, A_2\}, 1 \le i \le k \} \\&\quad =\left\{ Z_{k+1}, B_{k+1}, C_{k+1}(i): 1 \le i \le \left\lfloor \frac{k+1}{2} \right\rfloor - 1, D_{k+1}, \right. \\&\qquad E_{k+1}: 1 \le i \le \left\lceil \frac{k+1}{2} \right\rceil -1,F_{k+1}, \\&\left. \qquad G_{k+1}: 1 \le i \le \left\lfloor \frac{k+1}{2} \right\rfloor - 1, H_{k+1} \right\} \end{aligned}$$

Proof of multiplicity

Let \(z_n\), \(b_n\), \(c_n(i)\), \(d_n\), \(e_n(i)\), \(f_n\), \(g_n(i)\), and \(h_n\) denote the multiplicity of \(Z_n\), \(B_n\), \(C_n(i)\), \(D_n\), \(E_n(i)\), \(F_n\), \(G_n(i)\), and \(H_n\), respectively, in \(\{ O_1 O_2 \cdots O_n O_n^{\dagger } O_{n-1}^{\dagger } \cdots O_1^{\dagger }: O_i \in \{A_1, A_2\}, 1 \le i \le n\}\). From Eqs. (25)–(34), we obtain the following recurrence relations: For \(n\ge 5\),

$$\begin{aligned} z_{n+1}= & {} 2z_n+b_n+\sum _{i=1}^{\left\lfloor \frac{n}{2} \right\rfloor -1} c_n(i) + \sum _{i=1}^{\left\lfloor \frac{n}{2} \right\rfloor -1} g_n(i) + h_n \\ b_{n+1}= & {} d_n \\ c_{n+1}(i)= & {} e_n(i): 1 \le i \le \left\lfloor \frac{n+1}{2} \right\rfloor - 1, \\ d_{n+1}= & {} f_n, \\ e_{n+1}(1)= & {} h_n + c_n(1), \\ e_{n+1}(i)= & {} g_n\left( \left\lfloor \frac{n}{2} \right\rfloor - i +1\right) +c_n(i): 2 \le i \le \left\lceil \frac{n+1}{2} \right\rceil - 2, \\ e_{n+1}\left( \left\lceil \frac{n+1}{2} \right\rceil - 1\right)= & {} g_n(1) + b_n, \\ f_{n+1}= & {} d_n, \\ g_{n+1}(i)= & {} e_n\left( \left\lceil \frac{n}{2} \right\rceil - i\right) : 1 \le i \le \left\lfloor \frac{n+1}{2} \right\rfloor - 1, \\ h_{n+1}= & {} f_n \end{aligned}$$

with initial conditions

$$\begin{aligned} z_4= & {} 6, b_4 = 1, c_4(1)=2, d_4 = 1, e_4 (1) = 1, \\ f_4= & {} 1, g_4(1)=2,h_4 = 1 \end{aligned}$$

Solving the above recurrences with the given initial conditions results in

$$\begin{aligned} z_n= & {} 2^n - 2^{\lfloor \frac{n}{2} \rfloor + 1} - 2^{\left\lceil \frac{n}{2} \right\rceil } + 2, n \ge 4 \\ b_n= & {} 1, n \ge 4 \\ c_n(i)= & {} \left( \begin{array}{cc} \left\lfloor \frac{n}{2} \right\rfloor \\ i \end{array} \right) : 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1, n \ge 4 \\ d_n= & {} 1, n \ge 4 \\ e_n(i)= & {} \left( \begin{array}{cc} \left\lceil \frac{n}{2} \right\rceil \\ i \end{array} \right) : 1 \le i \le \left\lceil \frac{n}{2} \right\rceil - 1, n \ge 4 \\ f_n= & {} 1, n \ge 4 \\ g_n(i)= & {} \left( \begin{array}{cc} \left\lfloor \frac{n}{2} \right\rfloor \\ i \end{array} \right) : 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1, n \ge 4 \\ h_n= & {} 1, n \ge 4 \end{aligned}$$

Now that we have identified the distinct values along with multiplicities for

$$\begin{aligned} O_1 \cdots O_nO_n^\dagger \cdots O_1^\dagger \, \text {with} \, O_i \in \{A_1, A_2\} \, \text {and}\, 1 \le i \le n \end{aligned}$$

we can consider the cases of n being odd or even to conclude the lemma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulherkar, J., Sunitha, V. Capacity of a quantum memory channel correlated by matrix product states. Quantum Inf Process 17, 80 (2018). https://doi.org/10.1007/s11128-018-1847-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1847-4

Keywords

Navigation