Advertisement

Faithful qubit transmission in a quantum communication network with heterogeneous channels

  • Na Chen
  • Lin Xi Zhang
  • Chang Xing Pei
Article

Abstract

Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.

Keywords

Quantum communication network Partially entangled states Quantum teleportation 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants No. 61701285), Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2017RCJJ070).

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Barz, S., Kashefi, E., Broadbent, A., et al.: Demonstration of blind quantum computing. Science 335, 303 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cheng, S.T., Wang, C.Y., Tao, M.H.: Quantum communication for wireless wide-area networks. IEEE J. Sel. Area Commun. 23, 1424 (2005)CrossRefGoogle Scholar
  7. 7.
    Zhou, N.R., Zeng, G.H., Zhu, F.C., Liu, S.Q.: The quantum synchronous communication protocol for two-army problem. J. Shanghai Jiaotong Univ. 40, 1885 (2006)zbMATHGoogle Scholar
  8. 8.
    Bacinoglu, T., Gulbahar, B., Akan, O,B.: Constant fidelity entanglement flow in quantum communication networks. In: Proceedings of IEEE GLOBECOM 2010, Miami, USA (2010)Google Scholar
  9. 9.
    Yu, X.T., Xu, J., Zhang, Z.C.: Routing protocol for wireless ad hoc quantum communication network based on quantum teleprotation. Acta Phys. Sin. 61, 220303 (2012)Google Scholar
  10. 10.
    Wang, K., Yu, X.T., Lu, S.L., Gong, Y.X.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89, 022329 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Yu, X.T., Xu, J., Zhang, Z.C.: Distributed wireless quanutm communication networks. Chin. Phys. B 22, 090311 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Yu, X.T., Zhang, Z.C., Xu, J.: Distributed wireless quantum communication networks with partially entangled pairs. Chin. Phys. B 23, 010303 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Chen, N., Quan, D.X., Pei, C.X., Yang, H.: Quantum communication for satellite-to-ground networks with partially entangled states. Chin. Phys. B 24, 020304 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Sun, Q.C., Mao, Y.L., Chen, S.J., et al.: Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photonics 10, 671 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Grosshans, F.: Quantum communications: teleportation becomes streetwise. Nat. Photonics 10, 623 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Li, W.L., Li, C.F., Guo, G.C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Gour, G.: Faithful teleportation with partially entangled states. Phys. Rev. A 70, 042301 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Modławska, L.J., Grudka, A.: Nonmaximally entangled states can be better for multiple linear optical teleportation. Phys. Rev. Lett. 100, 110503 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rigolin, G.J.: Unity fidelity multiple teleportation using partially entangled states. J. Phys. B At. Mol. Opt. Phys. 42, 235504 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Fortes, R., Rigolin, G.: Improving the efficiency of single and multiple teleportation protocols based on the direct use of partially entangled states. Ann. Phys. 336, 517 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Choudhury, B.S., Dhara, A.: Probabilistically teleporting arbitrary two-qubit states. Quantum Inf. Process. 15, 5063 (2016)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Bennett, C.H., Brassard, G., Popescu, S., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    Vollbrecht, K.G.H., Verstraete, F.: Interpolation of recurrence and hashing entanglement distillation protocols. Phys. Rev. A 71, 062325 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Hostens, E., Dehaene, J., Moor, B.D.: Hashing protocol for distilling mulpartite Calderbank–Shor–Steane states. Phys. Rev. A 73, 042316 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electronics, Communications and PhysicsShangdong University of Science and TechnologyQingdaoChina
  2. 2.The State Key Laboratory of Integrated Services NetworksXidian UniversityXi’anChina

Personalised recommendations