Advertisement

Probabilistic teleportation via multi-parameter measurements and partially entangled states

  • Jiahua Wei
  • Lei Shi
  • Chen Han
  • Zhiyan Xu
  • Yu Zhu
  • Gang Wang
  • Hao Wu
Article

Abstract

In this paper, a novel scheme for probabilistic teleportation is presented with multi-parameter measurements via a non-maximally entangled state. This is in contrast to the fact that the measurement kinds for quantum teleportation are usually particular in most previous schemes. The detail implementation producers for our proposal are given by using of appropriate local unitary operations. Moreover, the total success probability and classical information of this proposal are calculated. It is demonstrated that the success probability and classical cost would be changed with the multi-measurement parameters and the entanglement factor of quantum channel. Our scheme could enlarge the research range of probabilistic teleportation.

Keywords

Probabilistic teleportation Multi-parameter measurements Success probability Classical communication 

Notes

Acknowledgements

The authors thank J. W. Luo, J. Jiang and B. X. Zhao for helpful discussions. This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61673389, 61703428, 61703420 and 61703422).

References

  1. 1.
    Dada, A., Leach, J., Buller, G., Padgett, M., Andersson, E.: Experimental high dimensional two-photon entanglement and violations of the generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011)CrossRefGoogle Scholar
  2. 2.
    Vedral, V.: Quantum entanglement. Nat. Phys. 10, 256 (2014)CrossRefzbMATHGoogle Scholar
  3. 3.
    Borges, H.S., Sanz, L., Alcalde, A.M.: Excitonic entanglement of protected states in quantum dot molecules. Phys. Lett. A 380, 3111 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfuter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of the three-particle entangled state by the partial three-particle entangled state and the three-particle entangled W state. Chin. Phys. Lett. 20, 1196 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states. J. Opt. B 6, 106 (2004)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, X.H., Ghose, S.: Analysis of N-qubit perfectly controlled teleportation schemes from the controllers point of view. Phys. Rev. A 91, 012320 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Wei, J.H., Dai, H.Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13, 2115 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Luo, M.X., Chen, X.B., Yang, Y.X., Niu, X.X.: Experimental architecture of joint remote state preparation. Quantum Inf. Process. 11, 751 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, J.F., Liu, J.M., Xu, X.Y.: Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf. Process. 14, 3465 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bennett, C.H., Wootters, W.K.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen state. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Zhang, D., Zha, X.W., Zhou, H.Y., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation. Int. J. Theor. Phys. 54, 1711 (2015)CrossRefzbMATHGoogle Scholar
  19. 19.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Li, W.L., Li, C.F., Guo, G.C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Wei, J.H., Dai, H.Y., Zhang, M.: A new scheme for probabilistic teleportation and its potential applications. Commun. Theor. Phys. 60, 651 (2013)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by two partially entangled GHZ state and W state. Opt. Commun. 231, 281 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Jiang, M., Dong, D.Y.: Multi-party quantum state sharing via various probabilistic channels. Quantum Inf. Process. 12, 237 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zhao, M.J., Chen, B., Fei, S.M.: Detection of the ideal resource for multiqubit teleportation. Chin. Phys. B 24, 070302 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zheng, S.B., Guo, G.C.: Teleportation of atomic states within cavities in thermal states. Phys. Rev. A 63, 044302 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Fu, C.H., Hu, Z.N.: Quantum teleportation via completely anisotropic Heisenberg chain in inhomogeneous magnetic field. Commun. Theor. Phys. 59, 398 (2013)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Oh, S., Lee, S.W., Lee, J., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Cheong, Y.W., Lee, S.W., Lee, J., Lee, H.W.: Entanglement purification for high-dimensional multipartite systems. Phys. Rev. A 76, 042314 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Jung, E., Hwang, M.R., You, H.J., Kim, M.S., Yoo, S.K., Kim, H., Yoo, S.K., Kim, H., Park, D.K., Son, J.W., Tamaryan, S., Cha, S.K.: GHZ versus W: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Li, Y.M., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environmentss. Quantum Inf. Process. 15, 929 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Li, J.F., Liu, J.M., Feng, X.L., Oh, C.H.: Deterministic remote two-qubit state preparation in dissipative environments. Quantum Inf. Process. 15, 1 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    He, X.L., Yang, C.P.: Deterministic transfer of multiqubit GHZ entangled states and quantum secret sharing between different cavities. Quantum Inf. Process. 14, 4461 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Information and Navigation CollegeAir Force Engineering UniversityXi’anPeople’s Republic of China
  2. 2.Department of Automatic Control, College of Mechatronics and AutomationNational University of Defense TechnologyChangshaPeople’s Republic of China
  3. 3.Department of Carrier-based Aircraft of Naval Aviation AcademyHuludaoPeople’s Republic of China

Personalised recommendations