Dynamical evolution of entanglement of a three-qubit system driven by a classical environmental colored noise

  • Lionel Tenemeza Kenfack
  • Martin Tchoffo
  • Georges Collince Fouokeng
  • Lukong Cornelius Fai


The effects of \( 1/f^{\alpha } (\alpha =1,2)\) noise stemming from one or a collection of random bistable fluctuators (RBFs), on the evolution of entanglement, of three non-interacting qubits are investigated. Three different initial configurations of the qubits are analyzed in detail: the Greenberger–Horne–Zeilinger (GHZ)-type states, W-type states and mixed states composed of a GHZ state and a W state (GHZ-W). For each initial configuration, the evolution of entanglement is investigated for three different qubit–environment (Q-E) coupling setups, namely independent environments, mixed environments and common environment coupling. With the help of tripartite negativity and suitable entanglement witnesses, we show that the evolution of entanglement is extremely influenced not only by the initial configuration of the qubits, the spectrum of the environment and the Q-E coupling setup considered, but also by the number of RBF modeling the environment. Indeed, we find that the decay of entanglement is accelerated when the number of fluctuators modeling the environment is increased. Furthermore, we find that entanglement can survive indefinitely to the detrimental effects of noise even for increasingly larger numbers of RBFs. On the other hand, we find that the proficiency of the tripartite entanglement witnesses to detect entanglement is weaker than that of the tripartite negativity and that the symmetry of the initial states is broken when the qubits are coupled to the noise in mixed environments. Finally, we find that the 1 / f noise is more harmful to the survival of entanglement than the \( 1/f^{2} \) noise and that the mixed GHZ-W states followed by the GHZ-type states preserve better entanglement than the W-type ones.


Qubits Colored noise Entanglement 



This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.


  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Die Naturwissenschaften 23, 807–8012 (1935)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bennett, C.H., Brenstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  6. 6.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information: Basic Tools and Special Topics. World Scientific, Singapore (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gottesman, D.: Quantum information science and its contributions to mathematics. Proc. Symp. Appl. Math. 68, 13 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Facchi, P., Lidar, D., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Lidar, D.A., Chuang, I.L., Whaley, B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Shin T.Y.: Quantum Correlations and Chaos in Multipartite Systems National, PhD Thesis, University of Singapore (2014)Google Scholar
  16. 16.
    Ma, J., Sun, Z., Wang, X., Nori, F.: Entanglement dynamics of two qubits in a common bath. Phys. Rev. A 85, 062323 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Lionel, T.K., Martin, T., Collince, F.G., Fai, L.C.: Effects of static noise on the dynamics of quantum correlations for a system of three qubits. Int. J. Mod. Phys. B 30, 1750046 (2016)zbMATHGoogle Scholar
  18. 18.
    Tchoffo, M., Kenfack, L.T., Fouokeng, G.C., Fai, L.C.: Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise. Eur. Phys. J. Plus. 131, 380 (2016)CrossRefGoogle Scholar
  19. 19.
    Kenfack, L.T., Tchoffo, M., Fai, L.C., Fouokeng, G.C.: Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise. Phys. B 511, 123 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Kenfack, L.T., Tchoffo, M., Fai, L.C.: Dynamics of tripartite quantum entanglement and discord under a classical dephasing random telegraph noise. Eur. Phys. J. Plus. 132, 91 (2017)CrossRefGoogle Scholar
  21. 21.
    Ali, M.: Robustness of genuine tripartite entanglement under collective dephasing. Chin. Phys. Lett. 32, 060302 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Wu, S.T.: Quenched decoherence in qubit dynamics due to strong amplitude-damping noise. Phys. Rev. A 89, 034301 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Ali, M.: Decoherence of genuine multipartite entanglement for local non-Markovian–Lorentzian reservoirs. Chin. Phys. B 24, 120303 (2015)CrossRefGoogle Scholar
  24. 24.
    Kenfack, L.T., Tchoffo, M., Fouokeng, G.C., Fai, L.C.: Dynamics of tripartite quantum correlations in mixed classical environments: the joint effects of the random telegraph and static noises. Int. J. Quant. Inf. 15, 1750038 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Bandyopadhyay, S., Lidar, D.A.: Robustness of multiqubit entanglement in the independent decoherence model. Phys. Rev. A 72, 042339 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Chaves, R., Davidovich, L.: Robustness of entanglement as a resource. Phys. Rev. A 82, 052308 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Aolita, L., Cavalcanti, D., Chaves, R., Dhara, C., Davidovich, L., Acín, A.: Noisy evolution of graph-state entanglement. Phys. Rev. A 82, 032317 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Tian, L.-J., Yan, Y.-Y., Qin, L.-G.: Quantum correlation in three-qubit Heisenberg model with Dzyaloshinskii–Moriya interaction. Commun. Theor. Phys. 58, 39 (2012)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87, 042310 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Li, M., Fei, S.M., Wang, Z.X.: A lower bound of concurrence for multipartite quantum states. J. Phys. A Math. Theor. 42, 145303 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rossi, M.A.C., Benedetti, C., Paris, M.G.A.: Engineering decoherence for two-qubit systems interacting with a classical environment. Int. J. Quantum Inf. 12, 1560003 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Dynamics of quantum correlations in colored-noise environments. Phys. Rev. A 87, 052328 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Benedetti, C., Paris, M.G.A., Buscemi, F., Bordone P.: Time-evolution of entanglement and quantum discord of bipartite systems subject to \( 1/f^{\alpha } \) noise. In: Proceedings of the 22nd International Conference on Noise and Fluctuations (ICNF), Montpellier.,6578952 (2013)
  36. 36.
    Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Effects of classical environmental noise on entanglement and quantum discord dynamics. Int. J. Quant. Inf. 10, 1241005 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    De, A., Lang, A., Zhou, D., Joynt, R.: Suppression of decoherence and disentanglement by the exchange interaction. Phys. Rev. A 83, 042331 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Bergli, J., Galperin, Y.M., Altshuler, B.L.: Decoherence in qubits due to low-frequency noise. New J. Phys. 11, 025002 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    Weissman, M.B.: \( 1/f \) noise and other slow, non exponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    Koch, R.H., DiVincenzo, D.P., Clarke, J.: Model for \( 1/f \) flux noise in SQUIDs and qubits. Phys. Rev. Lett. 98, 267003 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Paladino, E., Faoro, L., Falci, G., Fazio, R.: Decoherence and \( 1/f \) noise in Josephson qubits. Phys. Rev. Lett. 88, 228304 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Kakuyanagi, K., Meno, T., Saito, S., Nakano, H., Semba, K., Takayanagi, H., Deppe, F., Shnirman, A.: Dephasing of a superconducting flux qubit. Phys. Rev. Lett. 98, 047004 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    Johanson, R.E., Gunes, M., Kasap, S.O.: \( 1/f \) Noise in doped and undoped amorphous silicon. J. Non-cryst. Sol. 242, 266 (2000)Google Scholar
  44. 44.
    Raquet, B., Anane, A., Wirth, S., Xiong, P., von Molnar, S.: Noise Probe of the dynamic phase separation in La 2/3 Ca 1/3 MnO3. Phys. Rev. Lett. 84, 4485 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    Jung, G., Paltiel, Y., Zeldov, E., Myasoedov, Y., Rappaport, M.L., Ocio, M., Bhattacharya, S.: M. J. Higgins. Proceedings of SPIE, vol. 5112, p. 222 (2003)Google Scholar
  46. 46.
    Johnson, J.B.: The Schottky effect in low frequency circuits. Phys. Rev. 26, 71 (1925)ADSCrossRefGoogle Scholar
  47. 47.
    Sabin, C., Garcia-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Weinstein, Y.S.: Tripartite entanglement witnesses and entanglement sudden death. Phys. Rev. A 79, 012318 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    Kenfack, L.T., Tchoffo, M., Jipdi, M.N., Fuoukeng, G.C., Fai, L.C.: Dynamics of entanglement and state-space trajectories followed by a system of four-qubit in the presence of random telegraph noise: common environment (CE) versus independent environments (IEs). arXiv preprint arXiv:1707.02762 (2017)
  52. 52.
    Bergli, J., Galperin, Y.M., Altshuler, B.L.: Decoherence of a qubit by non-Gaussian noise at an arbitrary working point. Phys. Rev. B 74, 024509 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    Benedetti, C., Paris, M.G.A., Maniscalco, S.: Non-Markovianity of colored noisy channels. Phys. Rev. A 89, 012114 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    Siomau, M., Fritzsche, S.: Entanglement dynamics of three-qubit states in noisy channels. Eur. Phys. J. D 60, 397–403 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    Ma, X.S., Wang, A.M., Yang, X.D., You, Y.: Entanglement dynamics and decoherence of three-qubit system in a fermionic environment. J. Phys. A Math. Gen. 38, 27612772 (2005)MathSciNetGoogle Scholar
  57. 57.
    Ma, X.S., Cong, H.S., Zhang, J.Y., Wang, A.M.: Entanglement dynamics of three-qubit states under an \( XY \) spin-chain environment. Eur. Phys. J. D 48, 285–292 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    Guo, J.L., Song, H.S.: Entanglement dynamics of three-qubit coupled to an \( XY \) spin chain at finite temperature with three-site interaction. Eur. Phys. J. D 61, 791796 (2011)Google Scholar
  59. 59.
    Xu, J.-Z., Guo, J.-B., Wen, W., Bai, Y.-K., Yan, F.: Entanglement evolution of three-qubit mixed states in multipartite cavity-reservoir systems. Chin. Phys. B 21, 080305 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    Siomau, M.: Evolution equation for entanglement of multiqubit systems. Phys. Rev. A 82, 062327 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lionel Tenemeza Kenfack
    • 1
  • Martin Tchoffo
    • 1
  • Georges Collince Fouokeng
    • 1
    • 2
  • Lukong Cornelius Fai
    • 1
  1. 1.Laboratoire de Matière Condensée, D’électronique et de Traitement du Signal (LAMACETS), Departement de Physique, Faculté des SciencesUniversité de DschangDschangCameroon
  2. 2.Laboratoire de Génie des Matériaux, Pôle Recherche-Innovation-Entrepreneuriat (PRIE)Institut Universitaire de la CôteDoualaCameroon

Personalised recommendations