Skip to main content
Log in

Dynamical evolution of entanglement of a three-qubit system driven by a classical environmental colored noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The effects of \( 1/f^{\alpha } (\alpha =1,2)\) noise stemming from one or a collection of random bistable fluctuators (RBFs), on the evolution of entanglement, of three non-interacting qubits are investigated. Three different initial configurations of the qubits are analyzed in detail: the Greenberger–Horne–Zeilinger (GHZ)-type states, W-type states and mixed states composed of a GHZ state and a W state (GHZ-W). For each initial configuration, the evolution of entanglement is investigated for three different qubit–environment (Q-E) coupling setups, namely independent environments, mixed environments and common environment coupling. With the help of tripartite negativity and suitable entanglement witnesses, we show that the evolution of entanglement is extremely influenced not only by the initial configuration of the qubits, the spectrum of the environment and the Q-E coupling setup considered, but also by the number of RBF modeling the environment. Indeed, we find that the decay of entanglement is accelerated when the number of fluctuators modeling the environment is increased. Furthermore, we find that entanglement can survive indefinitely to the detrimental effects of noise even for increasingly larger numbers of RBFs. On the other hand, we find that the proficiency of the tripartite entanglement witnesses to detect entanglement is weaker than that of the tripartite negativity and that the symmetry of the initial states is broken when the qubits are coupled to the noise in mixed environments. Finally, we find that the 1 / f noise is more harmful to the survival of entanglement than the \( 1/f^{2} \) noise and that the mixed GHZ-W states followed by the GHZ-type states preserve better entanglement than the W-type ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Die Naturwissenschaften 23, 807–8012 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brenstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  5. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information: Basic Tools and Special Topics. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  9. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gottesman, D.: Quantum information science and its contributions to mathematics. Proc. Symp. Appl. Math. 68, 13 (2009)

    Article  MathSciNet  Google Scholar 

  12. Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Facchi, P., Lidar, D., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)

    Article  ADS  Google Scholar 

  14. Lidar, D.A., Chuang, I.L., Whaley, B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  15. Shin T.Y.: Quantum Correlations and Chaos in Multipartite Systems National, PhD Thesis, University of Singapore (2014)

  16. Ma, J., Sun, Z., Wang, X., Nori, F.: Entanglement dynamics of two qubits in a common bath. Phys. Rev. A 85, 062323 (2012)

    Article  ADS  Google Scholar 

  17. Lionel, T.K., Martin, T., Collince, F.G., Fai, L.C.: Effects of static noise on the dynamics of quantum correlations for a system of three qubits. Int. J. Mod. Phys. B 30, 1750046 (2016)

    MATH  Google Scholar 

  18. Tchoffo, M., Kenfack, L.T., Fouokeng, G.C., Fai, L.C.: Quantum correlations dynamics and decoherence of a three-qubit system subject to classical environmental noise. Eur. Phys. J. Plus. 131, 380 (2016)

    Article  Google Scholar 

  19. Kenfack, L.T., Tchoffo, M., Fai, L.C., Fouokeng, G.C.: Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise. Phys. B 511, 123 (2017)

    Article  ADS  Google Scholar 

  20. Kenfack, L.T., Tchoffo, M., Fai, L.C.: Dynamics of tripartite quantum entanglement and discord under a classical dephasing random telegraph noise. Eur. Phys. J. Plus. 132, 91 (2017)

    Article  Google Scholar 

  21. Ali, M.: Robustness of genuine tripartite entanglement under collective dephasing. Chin. Phys. Lett. 32, 060302 (2015)

    Article  ADS  Google Scholar 

  22. Wu, S.T.: Quenched decoherence in qubit dynamics due to strong amplitude-damping noise. Phys. Rev. A 89, 034301 (2014)

    Article  ADS  Google Scholar 

  23. Ali, M.: Decoherence of genuine multipartite entanglement for local non-Markovian–Lorentzian reservoirs. Chin. Phys. B 24, 120303 (2015)

    Article  Google Scholar 

  24. Kenfack, L.T., Tchoffo, M., Fouokeng, G.C., Fai, L.C.: Dynamics of tripartite quantum correlations in mixed classical environments: the joint effects of the random telegraph and static noises. Int. J. Quant. Inf. 15, 1750038 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bandyopadhyay, S., Lidar, D.A.: Robustness of multiqubit entanglement in the independent decoherence model. Phys. Rev. A 72, 042339 (2005)

    Article  ADS  Google Scholar 

  26. Chaves, R., Davidovich, L.: Robustness of entanglement as a resource. Phys. Rev. A 82, 052308 (2010)

    Article  ADS  Google Scholar 

  27. Aolita, L., Cavalcanti, D., Chaves, R., Dhara, C., Davidovich, L., Acín, A.: Noisy evolution of graph-state entanglement. Phys. Rev. A 82, 032317 (2010)

    Article  ADS  Google Scholar 

  28. Tian, L.-J., Yan, Y.-Y., Qin, L.-G.: Quantum correlation in three-qubit Heisenberg model with Dzyaloshinskii–Moriya interaction. Commun. Theor. Phys. 58, 39 (2012)

    Article  ADS  MATH  Google Scholar 

  29. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  30. Buscemi, F., Bordone, P.: Time evolution of tripartite quantum discord and entanglement under local and nonlocal random telegraph noise. Phys. Rev. A 87, 042310 (2013)

    Article  ADS  Google Scholar 

  31. Li, M., Fei, S.M., Wang, Z.X.: A lower bound of concurrence for multipartite quantum states. J. Phys. A Math. Theor. 42, 145303 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Rossi, M.A.C., Benedetti, C., Paris, M.G.A.: Engineering decoherence for two-qubit systems interacting with a classical environment. Int. J. Quantum Inf. 12, 1560003 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Dynamics of quantum correlations in colored-noise environments. Phys. Rev. A 87, 052328 (2013)

    Article  ADS  Google Scholar 

  35. Benedetti, C., Paris, M.G.A., Buscemi, F., Bordone P.: Time-evolution of entanglement and quantum discord of bipartite systems subject to \( 1/f^{\alpha } \) noise. In: Proceedings of the 22nd International Conference on Noise and Fluctuations (ICNF), Montpellier. https://doi.org/10.1109/ICNF,6578952 (2013)

  36. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Effects of classical environmental noise on entanglement and quantum discord dynamics. Int. J. Quant. Inf. 10, 1241005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. De, A., Lang, A., Zhou, D., Joynt, R.: Suppression of decoherence and disentanglement by the exchange interaction. Phys. Rev. A 83, 042331 (2011)

    Article  ADS  Google Scholar 

  38. Bergli, J., Galperin, Y.M., Altshuler, B.L.: Decoherence in qubits due to low-frequency noise. New J. Phys. 11, 025002 (2009)

    Article  ADS  Google Scholar 

  39. Weissman, M.B.: \( 1/f \) noise and other slow, non exponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537 (1988)

    Article  ADS  Google Scholar 

  40. Koch, R.H., DiVincenzo, D.P., Clarke, J.: Model for \( 1/f \) flux noise in SQUIDs and qubits. Phys. Rev. Lett. 98, 267003 (2007)

    Article  ADS  Google Scholar 

  41. Paladino, E., Faoro, L., Falci, G., Fazio, R.: Decoherence and \( 1/f \) noise in Josephson qubits. Phys. Rev. Lett. 88, 228304 (2002)

    Article  ADS  Google Scholar 

  42. Kakuyanagi, K., Meno, T., Saito, S., Nakano, H., Semba, K., Takayanagi, H., Deppe, F., Shnirman, A.: Dephasing of a superconducting flux qubit. Phys. Rev. Lett. 98, 047004 (2007)

    Article  ADS  Google Scholar 

  43. Johanson, R.E., Gunes, M., Kasap, S.O.: \( 1/f \) Noise in doped and undoped amorphous silicon. J. Non-cryst. Sol. 242, 266 (2000)

    Google Scholar 

  44. Raquet, B., Anane, A., Wirth, S., Xiong, P., von Molnar, S.: Noise Probe of the dynamic phase separation in La 2/3 Ca 1/3 MnO3. Phys. Rev. Lett. 84, 4485 (2000)

    Article  ADS  Google Scholar 

  45. Jung, G., Paltiel, Y., Zeldov, E., Myasoedov, Y., Rappaport, M.L., Ocio, M., Bhattacharya, S.: M. J. Higgins. Proceedings of SPIE, vol. 5112, p. 222 (2003)

  46. Johnson, J.B.: The Schottky effect in low frequency circuits. Phys. Rev. 26, 71 (1925)

    Article  ADS  Google Scholar 

  47. Sabin, C., Garcia-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  48. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  49. Weinstein, Y.S.: Tripartite entanglement witnesses and entanglement sudden death. Phys. Rev. A 79, 012318 (2009)

    Article  ADS  Google Scholar 

  50. Acin, A., Andrianov, A., Costa, L., Jane, E., Latorre, J.I., Tarrach, R.: Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)

    Article  ADS  Google Scholar 

  51. Kenfack, L.T., Tchoffo, M., Jipdi, M.N., Fuoukeng, G.C., Fai, L.C.: Dynamics of entanglement and state-space trajectories followed by a system of four-qubit in the presence of random telegraph noise: common environment (CE) versus independent environments (IEs). arXiv preprint arXiv:1707.02762 (2017)

  52. Bergli, J., Galperin, Y.M., Altshuler, B.L.: Decoherence of a qubit by non-Gaussian noise at an arbitrary working point. Phys. Rev. B 74, 024509 (2006)

    Article  ADS  Google Scholar 

  53. Benedetti, C., Paris, M.G.A., Maniscalco, S.: Non-Markovianity of colored noisy channels. Phys. Rev. A 89, 012114 (2014)

    Article  ADS  Google Scholar 

  54. Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302 (2008)

    Article  ADS  Google Scholar 

  55. Siomau, M., Fritzsche, S.: Entanglement dynamics of three-qubit states in noisy channels. Eur. Phys. J. D 60, 397–403 (2010)

    Article  ADS  Google Scholar 

  56. Ma, X.S., Wang, A.M., Yang, X.D., You, Y.: Entanglement dynamics and decoherence of three-qubit system in a fermionic environment. J. Phys. A Math. Gen. 38, 27612772 (2005)

    MathSciNet  Google Scholar 

  57. Ma, X.S., Cong, H.S., Zhang, J.Y., Wang, A.M.: Entanglement dynamics of three-qubit states under an \( XY \) spin-chain environment. Eur. Phys. J. D 48, 285–292 (2008)

    Article  ADS  Google Scholar 

  58. Guo, J.L., Song, H.S.: Entanglement dynamics of three-qubit coupled to an \( XY \) spin chain at finite temperature with three-site interaction. Eur. Phys. J. D 61, 791796 (2011)

    Google Scholar 

  59. Xu, J.-Z., Guo, J.-B., Wen, W., Bai, Y.-K., Yan, F.: Entanglement evolution of three-qubit mixed states in multipartite cavity-reservoir systems. Chin. Phys. B 21, 080305 (2012)

    Article  ADS  Google Scholar 

  60. Siomau, M.: Evolution equation for entanglement of multiqubit systems. Phys. Rev. A 82, 062327 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Tchoffo.

Appendices

Appendix A: Explicit forms of the time-evolved three-qubit density matrix: the case of GHZ-type states

Here, we give the explicit forms of the time-evolved density matrix obtained from Eq. (8) when the three qubits are initially prepared in the GHZ-type states of Eq. (10) and then subjected either to a collection of N RBFs or to a single RBF (N = 1) in common, independent and mixed environments. Throughout this section, we have

$$\begin{aligned} \tau (t)=\dfrac{r\eta _{2}^{2}(t)}{4}=\dfrac{r}{4}\left[ \int \limits _{\,\,\gamma _{\min }}^{\gamma _{\max }}G_{2\lambda }(\gamma ,t){{\mathrm{P}}}(\gamma )\,\gamma \right] ^{2N} \end{aligned}$$

and

$$\begin{aligned} \chi (t)=\dfrac{r}{16}(\eta _{4}(t)+1)=\dfrac{r}{16}\left( \left[ \int \limits _{\,\,\gamma _{\min }}^{\gamma _{\max }}G_{4\lambda }(\gamma ,t){{\mathrm{P}}}(\gamma )\,\mathrm{d}\gamma \right] ^{N}+1\right) . \end{aligned}$$

where the time-dependent function \( G_{n\lambda }(\gamma ,t) \) has been already defined in Eq. (21).

1.1 Independent environments (IE)

For this Q-E interaction configuration, we find that the density matrix of the system at a given time t can be written as

$$\begin{aligned} \rho _\mathrm{GHZ}^\mathrm{IE}(t)=\dfrac{1}{8} \left[ \begin{array}{cccccccc} \mathcal {E}(t) &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {\mathcal {D}}(t) \\ 0&{} {\mathcal {K}}(t) &{} 0 &{} 0 &{} 0&{} 0 &{} {\mathcal {F}}(t) &{}0 \\ 0 &{} 0 &{} {\mathcal {K}}(t) &{} 0 &{} 0 &{} {\mathcal {F}}(t) &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} {\mathcal {K}}(t) &{} {\mathcal {F}}(t) &{} 0 &{} 0 &{} 0 \\ 0&{} 0 &{} 0 &{} {\mathcal {F}}(t) &{} {\mathcal {K}}(t) &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} {\mathcal {F}}(t) &{} 0 &{} 0 &{} {\mathcal {K}}(t) &{} 0 &{} 0\\ 0&{} {\mathcal {F}}(t) &{} 0 &{} 0 &{} 0 &{} 0 &{} {\mathcal {K}}(t) &{} 0 \\ {\mathcal {D}}(t)&{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \mathcal {E}(t) \end{array}\right] , \end{aligned}$$
(A.1)

with \( \mathcal {E}(t)=12\tau (t)+1 \), \({\mathcal {K}}(t)=1-4\tau (t) \), \({\mathcal {F}}(t)=r-4\tau (t)\), and \( {\mathcal {D}}(t)=r+12\tau (t) \).

1.2 Mixed environments (ME)

On the other hand, for the case of ME coupling we find that the dynamics of the system is described by the following density matrix

$$\begin{aligned} \rho _\mathrm{GHZ}^\mathrm{ME}(t)= \left[ \begin{array}{cccccccc} \mathcal {T}(t)+\dfrac{1}{8}&{} -\,\mathcal {G}(t) &{} 0 &{} 0 &{} 0 &{} 0 &{} -\,\mathcal {G}(t) &{} \mathcal {T}(t)+\dfrac{r}{8} \\ -\,\mathcal {G}(t)&{} {\mathcal {Y}}(t)+\dfrac{1}{8} &{} 0 &{} 0 &{} 0 &{} 0 &{} {\mathcal {Y}}(t)+\dfrac{r}{8} &{} -\,\mathcal {G}(t) \\ 0&{} 0 &{} \mathcal {M}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} 0 &{} 0 \\ 0&{} 0 &{} \mathcal {G}(t) &{} \mathcal {M}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} 0 &{} 0\\ 0&{} 0 &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {M}(t) &{} \mathcal {G}(t) &{} 0&{} 0 \\ 0&{} 0 &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {M}(t) &{} 0 &{} 0 \\ -\,\mathcal {G}(t)&{} {\mathcal {Y}}(t)+\dfrac{r}{8} &{} 0 &{} 0 &{} 0 &{} 0 &{} {\mathcal {Y}}(t)+\dfrac{1}{8} &{} -\,\mathcal {G}(t) \\ \mathcal {T}(t)+\dfrac{r}{8} &{} -\,\mathcal {G}(t) &{} 0 &{} 0 &{}0 &{} 0&{} -\,\mathcal {G}(t) &{} \mathcal {T}(t)+\dfrac{1}{8} \end{array}\right] , \end{aligned}$$
(A.2)

where \( \mathcal {T}(t)=\chi (t)+\tau (t) \), \( {\mathcal {Y}}(t)=\chi (t)-\tau (t) \), \( \mathcal {G}(t)=\dfrac{r}{8}-\chi (t)\) and \( \mathcal {M}(t)= \dfrac{1}{8}-\chi (t)\)

1.3 Common environment (CE)

Finally, for the case of CE coupling, the density matrix describing the evolution of the system results into

$$\begin{aligned} \rho _\mathrm{GHZ}^\mathrm{CE}(t)= \left[ \begin{array}{cccccccc} 3\chi (t)+\dfrac{1}{8}&{} -\,\mathcal {G}(t) &{} -\,\mathcal {G}(t) &{} -\,\mathcal {G}(t) &{} -\,\mathcal {G}(t) &{} -\,\mathcal {G}(t) &{} -\,\mathcal {G}(t) &{} 3\chi (t)+\dfrac{r}{8} \\ -\,\mathcal {G}(t)&{} \mathcal {M}(t) &{}\mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} -\,\mathcal {G}(t) \\ -\,\mathcal {G}(t)&{} \mathcal {G}(t) &{} \mathcal {M}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} -\,\mathcal {G}(t) \\ -\,\mathcal {G}(t)&{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {M}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} -\,\mathcal {G}(t) \\ -\,\mathcal {G}(t)&{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {M}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} -\,\mathcal {G}(t)\\ -\,\mathcal {G}(t)&{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t)&{} \mathcal {M}(t) &{} \mathcal {G}(t) &{} -\,\mathcal {G}(t) \\ -\,\mathcal {G}(t)&{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} \mathcal {M}(t) &{} -\,\mathcal {G}(t)\\ 3\chi (t)+\dfrac{r}{8}&{} -\,\mathcal {G}(t) &{} -\,\mathcal {G}(t) &{} -\,\mathcal {G}(t) &{} -\,\mathcal {G}(t) &{} -\,\mathcal {G}(t) &{} -\,\mathcal {G}(t) &{} 3\chi (t)+\dfrac{1}{8} \end{array}\right] , \end{aligned}$$
(A.3)

where \( \mathcal {G}(t) \) and \( \mathcal {M}(t) \) have been already defined above.

We observe immediately that the form of the time-evolved density of the system initially prepared in the GHZ-type states depends upon the Q-E coupling configuration considered. This is in good agreement with the results of Ref. [30].

Appendix B: Explicit forms of the time-evolved three-qubit density matrix: the case of W-type states

Here, we give the explicit forms of the time-evolved density matrix obtained from Eq. (8) when the three qubits are initially prepared in the W-type states of Eq. (11) and then subjected either to a collection of N RBFs or to a single RBF (N = 1) in common, independent and mixed environments. Throughout this section, we recall that \(\eta _{n}(t)= \left[ \int \limits _{\gamma _{\min }}^{\gamma _{\max }}G_{n\lambda }(\gamma ,t){{\mathrm{P}}}(\gamma )\,\mathrm{d}\gamma \right] ^{2N}\), with \( n\in \left\{ 2,4,6 \right\} \).

1.1 Independent environments (IE)

If we set \( \mathcal {E}=1-r \), \( \mathcal {X}(t)=1+\eta _{2}(t) \) and \( {\mathcal {A}}=1-\eta _{2}(t) \), the density matrix for this configuration of the Q-E interaction can be written as

$$\begin{aligned} \rho _{W}^\mathrm{IE}(t)=\dfrac{1}{8} \left[ \begin{array}{cccccccc} \mathcal {L}(t)&{} 0 &{} 0 &{} \dfrac{4\mathcal {L}(t)}{3} &{} 0 &{} \dfrac{4\mathcal {L}(t)}{3} &{} \dfrac{4\mathcal {L}(t)}{3} &{} 0 \\ 0&{} {\mathcal {Z}}(t) &{} {\mathcal {K}}(t) &{} 0 &{} {\mathcal {K}}(t) &{} 0 &{} 0 &{} \dfrac{4{\mathcal {B}}(t)}{3} \\ 0&{} {\mathcal {K}}(t) &{} {\mathcal {Z}}(t) &{} 0 &{} {\mathcal {K}}(t) &{} 0 &{} 0 &{} \dfrac{4{\mathcal {B}}(t)}{3} \\ \dfrac{4\mathcal {L}(t)}{3}&{} 0 &{} 0 &{} {\mathcal {I}}(t) &{} 0 &{} \mathcal {O}(t) &{} \mathcal {O}(t) &{} 0 \\ 0&{} {\mathcal {K}}(t) &{} {\mathcal {K}}(t) &{} 0 &{} {\mathcal {Z}}(t) &{} 0 &{} 0 &{} \dfrac{4{\mathcal {B}}(t)}{3}\\ \dfrac{4\mathcal {L}(t)}{3}&{} 0 &{} 0 &{} \mathcal {O}(t) &{} 0 &{} {\mathcal {I}}(t) &{} \mathcal {O}(t) &{} 0 \\ \dfrac{4\mathcal {L}(t)}{3}&{} 0 &{} 0 &{} \mathcal {O}(t) &{} 0 &{} \mathcal {O}(t) &{} {\mathcal {I}}(t) &{} 0 \\ 0&{} \dfrac{4{\mathcal {B}}(t)}{3} &{} \dfrac{4{\mathcal {B}}(t)}{3} &{} 0 &{} \dfrac{4{\mathcal {B}}(t)}{3} &{} 0 &{} 0 &{} {\mathcal {B}}(t) \end{array}\right] , \end{aligned}$$
(B.1)

where

$$\begin{aligned} \mathcal {L}(t)= & {} r\mathcal {X}^{2}(t){\mathcal {A}}(t)+\mathcal {E},\\ {\mathcal {B}}(t)= & {} r\mathcal {X}(t){\mathcal {A}}^{2}(t)+\mathcal {E}, \\ {\mathcal {Z}}(t)= & {} \dfrac{r\mathcal {X}(t)}{3}\left[ \mathcal {X}^{2}(t)+2{\mathcal {A}}^{2}(t)\right] +\mathcal {E},\\ {\mathcal {I}}(t)= & {} \dfrac{r{\mathcal {A}}(t)}{3}\left[ {\mathcal {A}}^{2}(t)+2\mathcal {X}^{2}(t)\right] +\mathcal {E},\\ {\mathcal {K}}(t)= & {} \dfrac{2r\mathcal {X}(t)}{3}\left[ \mathcal {X}^{2}(t)-\mathcal {X}(t)+{\mathcal {A}}(t)\right] \\&\hbox { and } \mathcal {O}(t)=\dfrac{2r{\mathcal {A}}(t)}{3}\left[ \mathcal {X}^{2}(t)-\mathcal {X}(t)+{\mathcal {A}}(t)\right] . \end{aligned}$$

1.2 Mixed environments (ME)

On the other hand, when the subsystems are coupled in mixed environments, the time-evolved density matrix of the system takes the form

$$\begin{aligned} \rho _{W}^\mathrm{ME}(t)= \left[ \begin{array}{cccccccc} {\mathcal {Z}}(t)&{} 0 &{} 0 &{} {\mathcal {Y}}(t) &{} 0&{} {\mathcal {Y}}(t) &{} {\mathcal {Y}}(t) &{} 0 \\ 0 &{}\mathcal {X}(t) &{} {\mathcal {J}}(t) &{} 0 &{} \mathcal {Q}(t) &{} 0&{} 0 &{} {\mathcal {V}}(t) \\ 0&{} {\mathcal {J}}(t) &{}\mathcal {X}(t) &{} 0 &{} \mathcal {Q}(t) &{} 0 &{} 0 &{} {\mathcal {V}}(t) \\ {\mathcal {Y}}(t) &{} 0 &{} 0 &{} \mathcal {O}(t) &{} 0 &{} \mathcal {T}(t) &{} \mathcal {T}(t) &{} 0 \\ 0 &{} \mathcal {Q}(t) &{} \mathcal {Q}(t) &{} 0&{} {\mathcal {K}}(t) &{} 0 &{} 0 &{} \mathcal {L}(t) \\ {\mathcal {Y}}(t)&{} 0 &{} 0 &{} \mathcal {T}(t) &{} 0 &{} \mathcal {O}(t) &{} \mathcal {G}(t) &{} 0 \\ {\mathcal {Y}}(t)&{} 0 &{} 0 &{} \mathcal {T}(t) &{} 0 &{} \mathcal {G}(t) &{} \mathcal {O}(t) &{} 0 \\ 0 &{} {\mathcal {V}}(t) &{} {\mathcal {V}}(t) &{} 0&{} \mathcal {L}(t) &{} 0 &{} 0 &{} \mathcal {P}(t) \end{array}\right] , \end{aligned}$$
(B.2)

where

$$\begin{aligned} \mathcal {X}(t)= & {} \dfrac{r}{48}+\dfrac{1}{8}+r\left\{ \dfrac{1}{12}\eta _{2}^{2}(t)+\dfrac{3}{48}\eta _{2}(t)-\dfrac{1}{16}\eta _{4}(t)+\dfrac{10}{96}\eta _{2}(t)\eta _{4}(t)\right\} ,\\ \mathcal {O}(t)= & {} -\dfrac{r}{48}+\dfrac{1}{8}+r\left\{ -\dfrac{1}{16}\eta _{2}(t)+\dfrac{1}{16}\eta _{4}(t)-\dfrac{10}{96}\eta _{2}(t)\eta _{4}(t)\right\} , \\ {\mathcal {J}}(t)= & {} \dfrac{r}{12}\left\{ \eta _{2}^{2}(t)+\eta _{2}(t)+\eta _{2}(t)\eta _{4}(t)+1 \right\} , \\ {\mathcal {Z}}(t)= & {} \dfrac{r}{48}+\dfrac{1}{8}+r\left\{ -\dfrac{1}{12}\eta _{2}^{2}(t)+\dfrac{5}{48}\eta _{2}(t)-\dfrac{1}{16}\eta _{4}(t)-\dfrac{10}{96}\eta _{2}(t)\eta _{4}(t)\right\} ,\\ \mathcal {P}(t)= & {} \dfrac{r}{48}+\dfrac{1}{8}+r\left\{ -\dfrac{1}{12}\eta _{2}^{2}(t)-\dfrac{5}{48}\eta _{2}(t)-\dfrac{1}{16}\eta _{4}(t)+\dfrac{10}{96}\eta _{2}(t)\eta _{4}(t)\right\} , \\ {\mathcal {K}}(t)= & {} -\,\dfrac{r}{48}+\dfrac{1}{8}+r\left\{ \dfrac{1}{16}\eta _{2}(t)+\dfrac{1}{16}\eta _{4}(t)+\dfrac{10}{96}\eta _{2}(t)\eta _{4}(t)\right\} , \\ {\mathcal {V}}(t)= & {} -\dfrac{r}{96}\left\{ 10\eta _{2}(t)+6\eta _{4}(t)-10\eta _{2}(t)\eta _{4}(t)-6\right\} , \\ \mathcal {L}(t)= & {} \dfrac{r}{12}\left\{ -\eta _{2}^{2}(t)-\eta _{2}(t)+\eta _{2}(t)\eta _{4}(t)+1 \right\} , \\ \mathcal {T}(t)= & {} \dfrac{r}{96}\left\{ 6\eta _{4}(t)-6\eta _{2}(t)-10\eta _{2}(t)\eta _{4}(t)+10 \right\} , \\ {\mathcal {Y}}(t)= & {} -\,\dfrac{r}{12}\left\{ \eta _{2}^{2}(t)-\eta _{2}(t)+\eta _{2}(t)\eta _{4}(t)-1 \right\} , \\ \mathcal {G}(t)= & {} \dfrac{r}{12}\left\{ -\eta _{2}^{2}(t)+\eta _{2}(t)+\eta _{2}(t)\eta _{4}(t)-1 \right\} \hbox {and}\\ \mathcal {Q}(t)= & {} \dfrac{r}{12}\left\{ \eta _{2}^{2}(t)+\eta _{2}(t)+\eta _{2}(t)\eta _{4}(t)+1 \right\} . \end{aligned}$$

1.3 Common environment (CE)

Finally, for GHZ input configuration, the density matrix of the system at time t takes the following form when the qubits are coupled in a common environment

$$\begin{aligned} \rho _{W}^{CE}(t)= \left[ \begin{array}{cccccccc} {\mathcal {Z}}(t)&{} 0 &{} 0 &{} \mathcal {T}(t) &{} 0 &{} \mathcal {T}(t) &{} \mathcal {T}(t) &{} 0 \\ 0 &{} \mathcal {X}(t) &{} {\mathcal {D}}(t) &{} 0 &{} {\mathcal {D}}(t) &{} 0 &{} 0 &{} \mathcal {G}(t) \\ 0 &{} {\mathcal {D}}(t) &{} \mathcal {X}(t) &{} 0 &{} {\mathcal {D}}(t) &{} 0 &{} 0 &{} \mathcal {G}(t)\\ \mathcal {T}(t) &{} 0 &{} 0 &{} \mathcal {L}(t) &{} 0 &{} \mathcal {P}(t) &{} \mathcal {P}(t) &{} 0 \\ 0&{} {\mathcal {D}}(t) &{} {\mathcal {D}}(t) &{} 0 &{} \mathcal {X}(t) &{} 0 &{} 0 &{} \mathcal {G}(t) \\ \mathcal {T}(t) &{} 0 &{} 0&{} \mathcal {P}(t) &{} 0 &{} \mathcal {L}(t) &{} \mathcal {P}(t) &{} 0 \\ \mathcal {T}(t)&{} 0 &{} 0 &{} \mathcal {P}(t) &{} 0 &{} \mathcal {P}(t) &{} \mathcal {L}(t) &{} 0 \\ 0&{} \mathcal {G}(t) &{} \mathcal {G}(t) &{} 0 &{} \mathcal {G}(t) &{} 0 &{} 0 &{} \mathcal {O}(t) \end{array}\right] , \end{aligned}$$
(B.3)

where

$$\begin{aligned} {\mathcal {Z}}(t)= & {} \dfrac{1}{8}+r\left\{ \dfrac{1}{16}+\dfrac{3}{32}\eta _{2}(t)-\dfrac{3}{16}\eta _{4}(t)-\dfrac{3}{32}\eta _{6}(t)\right\} ,\\ \mathcal {T}(t)= & {} \dfrac{r}{96}+r\left\{ 9\eta _{2}(t)-6\eta _{4}(t)-9\eta _{6}(t)+6\right\} ,\\ \mathcal {L}(t)= & {} \dfrac{1}{8}-\dfrac{r}{48}\left\{ -\dfrac{7}{96}\eta _{2}(t)+\dfrac{1}{16}\eta _{4}(t)-\dfrac{3}{32}\eta _{6}(t)\right\} ,\\ {\mathcal {D}}(t)= & {} \dfrac{r}{96}\left\{ 7\eta _{2}(t)+6\eta _{4}(t)+9\eta _{6}(t)+10\right\} , \\ \mathcal {P}(t)= & {} \dfrac{r}{96}\left\{ 10-7\eta _{2}(t)+6\eta _{4}(t)-9\eta _{6}(t)\right\} ,\\ \mathcal {O}(t)= & {} \dfrac{1}{8}+\dfrac{r}{16}+r\left\{ -\dfrac{3}{32}\eta _{2}(t)-\dfrac{3}{16}\eta _{4}(t)+\dfrac{3}{32}\eta _{6}(t)\right\} , \\ \mathcal {X}(t)= & {} \dfrac{1}{8}-\dfrac{r}{48}\left\{ \dfrac{7}{96}\eta _{2}(t)+\dfrac{1}{16}\eta _{4}(t)+\dfrac{3}{32} \eta _{6}(t)\right\} \\&\hbox {and } \mathcal {G}(t)=\dfrac{r}{96}\left\{ 6- 9\eta _{2}(t)-6\eta _{4}(t)+9\eta _{6}(t)\right\} . \end{aligned}$$

Appendix C: Explicit forms of the time-evolved three-qubit density matrix: the case of mixed states of Eq. (12)

Here, we give the explicit forms of the time-evolved density matrix obtained from Eq. (8) when the three qubits are initially prepared in the mixed states composed of a W state and a GHZ state of Eq. (12) and then subjected either to a collection of N RBFs or to a single RBF (N = 1) in common, independent and mixed environments. Once more, we recall that throughout this section, the function \(\eta _{n}(t)\) with \(n\in \left\{ 2,4,6\right\} \) is defined in Eq. (23).

1.1 Independent environments (IE)

In this Q-E configuration, the dynamics of the system is governed by the following density matrix

$$\begin{aligned} \rho _{W-\mathrm{GHZ}}^\mathrm{IE}(t)= \left[ \begin{array}{cccccccc} {\mathcal {I}}_{1}(t)&{} 0 &{} 0 &{} {\mathcal {Y}}(t) &{} 0 &{} {\mathcal {Y}}(t) &{} {\mathcal {Y}} (t)&{} -\,3\mathcal {G}(t)+4r \\ 0&{} {\mathcal {I}}_{2}(t) &{} \mathcal {R}(t) &{} 0 &{} \mathcal {R}(t) &{} 0 &{} \mathcal {G}(t) &{} {\mathcal {F}}(t) \\ 0&{} \mathcal {R}(t) &{} {\mathcal {I}}_{2}(t) &{} 0 &{} \mathcal {R}(t) &{} \mathcal {G}(t) &{} 0 &{} {\mathcal {F}}(t) \\ {\mathcal {Y}}(t)&{} 0 &{} 0 &{} {\mathcal {I}}_{3}(t)&{} \mathcal {G}(t) &{} \mathcal {C}(t) &{}\mathcal {C}(t) &{} 0\\ 0&{} \mathcal {R}(t) &{} \mathcal {R}(t)&{} \mathcal {G}(t) &{} {\mathcal {I}}_{2}(t) &{} 0 &{} 0 &{} {\mathcal {F}}(t)\\ {\mathcal {Y}}(t)&{} 0 &{} \mathcal {G}(t) &{}\mathcal {C}(t)&{} 0 &{} {\mathcal {I}}_{3}(t) &{} \mathcal {C}(t) &{} 0\\ {\mathcal {Y}}(t) &{} \mathcal {G}(t) &{} 0 &{} \mathcal {C}(t) &{} 0 &{} \mathcal {C}(t) &{} {\mathcal {I}}_{3}(t)&{} 0\\ -\,3\mathcal {G}(t)+4r&{} {\mathcal {F}}(t) &{} {\mathcal {F}}(t) &{} 0 &{} {\mathcal {F}}(t) &{} 0 &{} 0 &{} {\mathcal {I}}_{4}(t) \end{array}\right] , \end{aligned}$$
(C.1)

where

$$\begin{aligned} \mathcal {X}(t)= & {} 1+\eta _{2}(t),{\mathcal {A}}(t)=1-\eta _{2}(t), \mathcal {O}(t)=(p-1)\dfrac{\left[ \eta _{2}^{3}(t)-\eta _{2}(t)\right] }{8}, \\ \mathcal {X}_{1}(t)= & {} \dfrac{(4p-1)\eta _{2}^{2}(t)+1}{8}, \mathcal {X}_{2}(t)=\dfrac{(1-4p)}{24}\eta _{2}^{2}(t)+\dfrac{1}{8}, \\ {\mathcal {D}}_{1}(t)= & {} \dfrac{(1-p){\mathcal {A}}(t)}{12}, {\mathcal {D}}_{2}(t)=\dfrac{(1-p)\mathcal {X}(t)}{12}, \\ \mathcal {G}(t)= & {} \dfrac{p(1-\eta _{2}^{2}(t))}{8}, \mathcal {L}(t)=\dfrac{(1-p)}{8}\left[ \eta _{2}^{3}(t)+\dfrac{1}{3}\eta _{2}(t)\right] , \\ {\mathcal {I}}_{1}(t)= & {} \mathcal {O}(t)+\mathcal {X}_{1}(t), {\mathcal {I}}_{2}(t)=\mathcal {L}(t)+\mathcal {X}_{2}(t), \\ {\mathcal {I}}_{3}(t)= & {} \mathcal {X}_{2}(t)-\mathcal {L}(t), {\mathcal {I}}_{4}(t)=\mathcal {X}_{1}(t)-\mathcal {O}(t),\\ \mathcal {P}(t)= & {} \mathcal {G}(t)-1, {\mathcal {Y}}(t)={\mathcal {D}}_{1}(t)\mathcal {X}^{2}(t),\\ \mathcal {R}(t)= & {} {\mathcal {D}}_{2}(t)\mathcal {P}(t), {\mathcal {F}}(t)={\mathcal {D}}_{2}(t){\mathcal {A}}^{2}(t)\;\hbox {and}\; \mathcal {C}(t)={\mathcal {D}}_{1}(t)\mathcal {P}(t). \end{aligned}$$

1.2 Mixed environments (ME)

Here, the time evolution of the system is governed by the following density matrix

$$\begin{aligned} \rho _{\mathrm{GHZ}-W}^\mathrm{ME}(t)= \left[ \begin{array}{cccccccc} \mathcal {R}(t) &{} \mathcal {E}(t) &{} 0 &{}\mathcal {X}(t) &{} 0 &{} \mathcal {X}(t) &{} \mathcal {M}(t) &{} {\mathcal {A}}(t) \\ \mathcal {E}(t)&{} \mathcal {T}(t) &{} {\mathcal {Z}}(t) &{} 0 &{} {\mathcal {Z}}(t) &{} 0&{} {\mathcal {I}}(t) &{} {\mathcal {Y}}(t)\\ 0&{} {\mathcal {Z}}(t) &{} {\mathcal {K}}(t) &{} \mathcal {Q}(t) &{} {\mathcal {K}}(t) &{} \mathcal {Q}(t) &{} 0 &{} {\mathcal {V}}(t) \\ \mathcal {X}(t)&{} 0 &{} \mathcal {Q}(t) &{} \mathcal {L}(t) &{} \mathcal {Q}(t) &{} \mathcal {L}(t) &{} \mathcal {C}(t)&{} 0 \\ 0&{} {\mathcal {Z}}(t) &{} {\mathcal {K}}(t) &{} \mathcal {Q}(t) &{} {\mathcal {K}}(t)&{} \mathcal {Q}(t) &{} 0 &{} {\mathcal {V}}(t) \\ \mathcal {X}(t)&{} 0 &{} \mathcal {Q}(t) &{} \mathcal {L}(t) &{} \mathcal {Q}(t) &{} \mathcal {L}(t) &{} \mathcal {C}(t) &{} 0 \\ \mathcal {M}(t)&{} {\mathcal {I}}(t) &{} 0 &{} \mathcal {C}(t) &{} 0 &{} \mathcal {C}(t) &{} {\mathcal {J}}(t) &{} \mathcal {E}(t) \\ {\mathcal {A}}(t)&{} {\mathcal {Y}}(t) &{} {\mathcal {V}}(t) &{} 0 &{} {\mathcal {V}}(t) &{} 0 &{} \mathcal {E}(t) &{} {\mathcal {B}}(t) \end{array}\right] , \end{aligned}$$
(C.2)

where

$$\begin{aligned} \mathcal {R}(t)= & {} \dfrac{1}{96}\left[ 8(4p-1)\eta _{2}^{2}(t)+10(p-1)\eta _{2}(t)(\eta _{4}(t)-1)+6(2p-1)\eta _{4}(t)\right] +\dfrac{p}{24}+\dfrac{7}{48},\\ \mathcal {T}(t)= & {} \dfrac{1}{96}\left[ 8(1-4p)\eta _{2}^{2}(t)+10(1-p)\eta _{2}(t)\eta _{4}(t)+6(1-1p)\eta _{2}(t)+6(2p-1)\eta _{4}(t)\right] +\dfrac{p}{24}+\dfrac{7}{48},\\ {\mathcal {J}}(t)= & {} \dfrac{1}{96}\left[ 8(1-4p)\eta _{2}^{2}(t)+10(1p-1)\eta _{2}(t)\eta _{4}(t)+6(p-1)\eta _{2}(t)+6(2p-1)\eta _{4}(t)\right] +\dfrac{p}{24}+\dfrac{7}{48},\\ {\mathcal {Y}}(t)= & {} \dfrac{1}{96}\left[ 10(1-p)\eta _{4}(t)\eta _{2}(t)+6(2p-1)\eta _{4}(t)+10(p-1)\eta _{2}(t)\right] +\dfrac{1}{16}(1-2p),\\ {\mathcal {I}}(t)= & {} -\dfrac{p}{4}\eta _{2}^{2}(t)+\dfrac{p}{16}(\eta _{4}(t)+3),\,\,\mathcal {E}(t)=\dfrac{p}{16}(\eta _{4}(t)-1),\,\,\mathcal {Q}(t)=\dfrac{p}{16}(1-\eta _{4}(t)),\\ {\mathcal {K}}(t)= & {} \dfrac{1}{96}\left[ 10(1-p)\eta _{4}(t)\eta _{2}(t)+6(1-p)\eta _{2}(t)+6(1-2p)\eta _{4}(t)\right] +\dfrac{1}{48}(5-2p),\\ \mathcal {L}(t)= & {} \dfrac{1}{96}\left[ 10(p-1)\eta _{4}(t)\eta _{2}(t)+6(p-1)\eta _{2}(t)+6(1-2p)\eta _{4}(t)\right] +\dfrac{1}{48}(5-2p),\\ {\mathcal {B}}(t)= & {} \dfrac{1}{96}\left[ 8(4p-1)\eta _{2}^{2}(t)+10(p-1)\eta _{2}(t)(1-\eta _{4}(t))+6(2p-1)\eta _{4}(t)\right] +\dfrac{p}{24}+\dfrac{7}{48},\\ {\mathcal {Z}}(t)= & {} \dfrac{(1-p)}{12}\left[ \eta _{2}^{2}(t)+\eta _{4}(t)\eta _{2}(t)+\eta _{2}(t)+1\right] ,\,\,{\mathcal {A}}(t)=\dfrac{p}{4}\eta _{2}^{2}(t)+\dfrac{p}{16}(\eta _{4}(t)+3),\\ \mathcal {M}(t)= & {} \dfrac{1}{96}\left[ 10(p-1)\eta _{4}(t)\eta _{2}(t)+6(2p-1)\eta _{4}(t)+10(1-p)\eta _{2}(t)\right] +\dfrac{1}{16}(1-2p),\\ {\mathcal {V}}(t)= & {} \dfrac{1}{12}\left[ (p-1)\eta _{2}^{2}(t)+(1-p)\eta _{2}(t)\eta _{4}(t)+(p-1)(\eta _{2}(t)-1)\right] ,\\ \mathcal {C}(t)= & {} \dfrac{1}{12}\left[ (1-p)\eta _{2}^{2}(t)+(p-1)\eta _{2}(t)\eta _{4}(t)+(p-1)(\eta _{2}(t)-1)\right] ,\\ \mathcal {X}(t)= & {} \dfrac{1}{12}\left[ (p-1)\eta _{2}^{2}(t)+(p-1)\eta _{2}(t)\eta _{4}(t)+(1-p)(\eta _{2}(t)+1)\right] . \end{aligned}$$

1.3 Common environment (CE)

Finally, when the qubits are embedded in a common environment, the dynamics is governed by the following density matrix

$$\begin{aligned} \rho _{GHZ-W}^{CE}(t)= \left[ \begin{array}{cccccccc} {\mathcal {J}}(t)&{} {\mathcal {V}}(t) &{} {\mathcal {V}}(t) &{} {\mathcal {K}}(t) &{} {\mathcal {V}}(t) &{} {\mathcal {K}}(t) &{} {\mathcal {K}}(t) &{} {\mathcal {Z}}(t) \\ {\mathcal {V}}(t)&{} {\mathcal {Y}}(t) &{} {\mathcal {Y}}(t) &{} -\,{\mathcal {V}}(t) &{} {\mathcal {Y}}(t) &{} -\,{\mathcal {V}}(t) &{} -\,{\mathcal {V}}(t) &{} {\mathcal {I}}(t) \\ {\mathcal {V}}(t)&{} {\mathcal {Y}}(t) &{} {\mathcal {Y}}(t) &{} -\,{\mathcal {V}}(t) &{} {\mathcal {Y}}(t) &{} -\,{\mathcal {V}}(t) &{} -\,{\mathcal {V}}(t) &{} {\mathcal {I}}(t) \\ {\mathcal {K}}(t)&{} -\,{\mathcal {V}}(t) &{} -\,{\mathcal {V}}(t) &{} {\mathcal {F}}(t) &{} -\,{\mathcal {V}}(t) &{} {\mathcal {F}}(t) &{} {\mathcal {F}}(t) &{} {\mathcal {V}}(t) \\ {\mathcal {V}}(t)&{} {\mathcal {Y}}(t) &{} {\mathcal {Y}}(t) &{} -\,{\mathcal {V}}(t) &{} {\mathcal {Y}}(t) &{} -\,{\mathcal {V}}(t) &{} -\,{\mathcal {V}}(t) &{} {\mathcal {I}}(t) \\ {\mathcal {K}}(t) &{} -\,{\mathcal {V}}(t) &{} -\,{\mathcal {V}}(t) &{} {\mathcal {F}}(t) &{} -\,{\mathcal {V}}(t) &{} {\mathcal {F}}(t) &{} {\mathcal {F}}(t) &{} {\mathcal {V}}(t) \\ {\mathcal {K}}(t)&{} -\,{\mathcal {V}}(t) &{} -\,{\mathcal {V}}(t) &{} {\mathcal {F}}(t) &{} -\,{\mathcal {V}}(t) &{} {\mathcal {F}}(t) &{} {\mathcal {F}}(t) &{} {\mathcal {V}}(t) \\ {\mathcal {Z}}(t)&{} {\mathcal {I}}(t) &{} {\mathcal {I}}(t) &{} {\mathcal {V}}(t) &{} {\mathcal {I}}(t) &{} {\mathcal {V}}(t) &{} {\mathcal {V}}(t) &{} {\mathcal {B}}(t) \end{array}\right] , \end{aligned}$$
(C.3)

with

$$\begin{aligned} {\mathcal {J}}(t)= & {} \dfrac{1}{32}\left[ 3(1-p)\eta _{2}(t)+6(2p-1)\eta _{4}(t)+3(p-1)\eta _{6}(t)\right] +\dfrac{1}{16}(1+2p),\\ {\mathcal {B}}(t)= & {} \dfrac{1}{32}\left[ 3(p-1)\eta _{2}(t)+6(2p-1)\eta _{4}(t)+3(1-p)\eta _{6}(t)\right] +\dfrac{1}{16}(1+2p),\\ {\mathcal {Y}}(t)= & {} \dfrac{1}{96}\left[ 7(1-p)\eta _{2}(t)+6(1-2p)\eta _{4}(t)+9(1-p)\eta _{6}(t)\right] +\dfrac{1}{48}(5-2p),\\ {\mathcal {F}}(t)= & {} \dfrac{1}{96}\left[ 7(p-1)\eta _{2}(t)+6(1-2p)\eta _{4}(t)+9(p-1)\eta _{6}(t)\right] +\dfrac{1}{48}(5-2p),\\ {\mathcal {K}}(t)= & {} \dfrac{1}{32}\left[ 3(1-p)\eta _{2}(t)+2(2p-1)\eta _{4}(t)+3(p-1)\eta _{6}(t)\right] +\dfrac{1}{16}(1-2p),\\ {\mathcal {I}}(t)= & {} \dfrac{1}{32}\left[ 3(p-1)\eta _{2}(t)+2(2p-1)\eta _{4}(t)+3(1-p)\eta _{6}(t)\right] +\dfrac{1}{16}(1-2p),\\ {\mathcal {V}}(t)= & {} \dfrac{p}{16}(\eta _{4}(t)-1)\,\, \text {and}\,\,{\mathcal {Z}}(t)=\dfrac{p}{16}(3\eta _{4}(t)+5). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenfack, L.T., Tchoffo, M., Fouokeng, G.C. et al. Dynamical evolution of entanglement of a three-qubit system driven by a classical environmental colored noise. Quantum Inf Process 17, 76 (2018). https://doi.org/10.1007/s11128-018-1839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1839-4

Keywords

Navigation