Entanglement-assisted quantum MDS codes from negacyclic codes

  • Liangdong Lu
  • Ruihu Li
  • Luobin Guo
  • Yuena Ma
  • Yang Liu
Article
  • 25 Downloads

Abstract

The entanglement-assisted formalism generalizes the standard stabilizer formalism, which can transform arbitrary classical linear codes into entanglement-assisted quantum error-correcting codes (EAQECCs) by using pre-shared entanglement between the sender and the receiver. In this work, we construct six classes of q-ary entanglement-assisted quantum MDS (EAQMDS) codes based on classical negacyclic MDS codes by exploiting two or more pre-shared maximally entangled states. We show that two of these six classes q-ary EAQMDS have minimum distance more larger than \(q+1\). Most of these q-ary EAQMDS codes are new in the sense that their parameters are not covered by the codes available in the literature.

Keywords

Entanglement-assisted quantum error-correcting codes (EAQECCs) MDS codes Negacyclic codes Cyclotomic 

Notes

Acknowledgements

This work is supported by National Natural Science Foundations of China under Grant No. 11471011 and the Natural Science Foundation of Shaanxi under Grant No. 2017JQ1032. We are grateful to the two anonymous reviewers for their helpful and constructive comments.

References

  1. 1.
    Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Gottesman, D.: An Introduction to Quantum Error Correction. arXiv:quant-ph/0004072 v1 (2000)
  3. 3.
    Brun, T., Devetak, I., Hsieh, M.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Hsieh, M., Devetak, I., Brun, T.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Wilde, M., Brun, T.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Lai, C., Brun, T.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Lai, C., Brun, T.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59, 4020–4024 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lai, C., Brun, T., Wilde, M.: Dualities and identities for entanglement-assisted quantum codes. Quantum Inf. Process. 13, 957–990 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hsieh, M., Yen, W., Hsu, L.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory 57, 1761–1769 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fujiwara, Y., Clark, D., Vandendriessche, P., De Boeck, M., Tonchev, V.D.: Entanglement-assisted quantum low-density parity-check codes. Phys. Rev. A 82(4), 042338 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Wilde, M., Hsieh, M., Babar, Z.: Entanglement-assisted quantum turbo codes. IEEE Trans. Inf. Theory 60, 1203–1222 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lu, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12, 1450015 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 12, 1450015 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Guo, L., Li, R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61, 1474–1484 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    He, X., Xu, L., Chen, H.: New q-ary quantum MDS codes with distances bigger than \(\frac{q}{2}\). Quantum Inf. Process. 15, 2745–2758 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. (2016).  https://doi.org/10.1007/s10623-016-0281-9 MATHGoogle Scholar
  18. 18.
    Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inform. Theory 59, 1193–1197 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60, 2080–2086 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14, 881–889 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Zhang, G., Chen, B.: New quantum MDS codes. Int. J. Quantum Inf. 12, 1450019 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Zhang, T., Ge, G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61, 5224–5228 (2015)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Zhang, T., Ge, G.: Quantum MDS code with large minimum distance. Des. Codes Cryptogr.  https://doi.org/10.1007/s10623-016-0245-0. (2016)
  24. 24.
    Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Li, R., Xu, Z.: Construction of \([[n, n.4, 3]]_{q}\) quantum MDS codes for odd prime power \(q\). Phys. Rev. A 82, 052316-1–052316-4 (2010)ADSGoogle Scholar
  26. 26.
    Fan, J., Chen, H., Xu, J.: Constructions of \(q\)-ary entanglement-assisted quantum MDS codes with minimum distance greater than \(q+1\). Quantum Inf. Comput. 16, 0423–0434 (2016)MathSciNetGoogle Scholar
  27. 27.
    Berlekamp, E.: Algebraic coding theory, Revised 1984. Laguna Hills: Aegean Park (1984)Google Scholar
  28. 28.
    Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 13, 0021–0035 (2013)MathSciNetGoogle Scholar
  29. 29.
    Li, R., Zuo, F., Liu, Y.: A study of skew asymmetric \(q^{2}\)-cyclotomic coset and its application. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 12(1), 87C89 (2011). (in Chinese)Google Scholar
  30. 30.
    Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. (2017).  https://doi.org/10.1007/s11128-017-1750-4 MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceAir Force Engineering UniversityXi’anPeople’s Republic of China

Personalised recommendations