Skip to main content
Log in

Quantum iSWAP gate in optical cavities with a cyclic three-level system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper we present a scheme to directly implement the iSWAP gate by passing a cyclic three-level system across a two-mode cavity quantum electrodynamics. In the scheme, a three-level \(\Delta \)-type atom ensemble prepared in its ground state mediates the interaction between the two-cavity modes. For this theoretical model, we also analyze its performance under practical noise, including spontaneous emission and the decay of the cavity modes. It is shown that our scheme may have a high fidelity under the practical noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yavuz, D.D.: Single photon SWAP gate using electromagnetically induced transparency. Phys. Rev. A 71, 053816 (2005)

    Article  ADS  Google Scholar 

  2. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  3. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  4. Yao, W., Liu, R.B., Sham, L.J.: Theory of control of the spin-photon interface for quantum networks. Phys. Rev. Lett. 95, 030504 (2005)

    Article  ADS  MATH  Google Scholar 

  5. Liu, Y.C., Luan, X.S., Li, H.K., Gong, Q.H., Wong, C.W., Xiao, Y.F.: Coherent polariton dynamics in coupled highly dissipative cavities. Phys. Rev. Lett. 112, 213602 (2014)

    Article  ADS  Google Scholar 

  6. Astafiev, O., Zagoskin Jr., A.M., Abdumalikov, A.A., Paskin, Y.A., Yamamoto, T., Inomata, K., Nakamura, Y., Tsai, J.S.: Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010)

    Article  ADS  Google Scholar 

  7. Steiner, M., Meyer, H.M., Reichel, J., Köhl, M.: Photon Emission and Absorption of a Single Ion Coupled to an Optical-Fiber Cavity. Phys. Rev. Lett. 113, 263003 (2014)

    Article  ADS  Google Scholar 

  8. Cirac, I.J., Zoller, P.: Quantum Computations with Cold Trapped Ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  9. Rempe, G., Thompson, R.J., Brecha, R.J., Lee, W.D., Kimble, H.J.: Optical bistability and photon statistics in cavity quantum electrodynamics. Phys. Rev. Lett. 67, 1727 (1991)

    Article  ADS  Google Scholar 

  10. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)

    Article  ADS  Google Scholar 

  11. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates Phys. Rev. Lett. 74, 4087 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Schön, C., Hammerer, K., Wolf, M.M., Cirac, J.I., Solano, E.: Sequential generation of matrix-product states in cavity \(QED\). Phys. Rev. A 75, 032311 (2007)

    Article  ADS  Google Scholar 

  13. Gershenfeld, N.A., Chuang, I.L.: Science. Bulk spin-resonance quantum computation 275, 350 (1997)

    Google Scholar 

  14. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  15. Zeng, H.S., Wang, Q., Fang, X.M., Kuang, L.M.: Universal quantum gates between distant quantum dot spins. Phys. Lett. A 374, 2129 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Brennen, G.K., Caves, C.M., Jessen, P.S., Deutsch, I.H.: Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060 (1999)

    Article  ADS  Google Scholar 

  17. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  MATH  Google Scholar 

  18. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, E.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  19. Cirac, J.I., Zoller, P.: Quantum Computations with Trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  20. Knill, E., Laflamme, R., Milbum, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  21. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Xiao, Y.F., Zou, X.B., He, Z.F., Guo, G.C.: Quantum phase gate in an optical cavity with atomic cloud. Phys. Rev. A 74, 044303 (2006)

    Article  ADS  Google Scholar 

  23. Lin, G.W., Zou, X.B., Ye, M.Y., Lin, X.M., Guo, G.C.: Quantum SWAP gate in an optical cavity with an atomic cloud. Phys. Rev. A 77, 064301 (2008)

    Article  ADS  Google Scholar 

  24. Shu, J., Zou, X.B., Xiao, Y.F., Guo, G.C.: Quantum phase gate of photonic qubits in a cavity QED system. Phys. Rev. A 75, 044302 (2007)

    Article  ADS  Google Scholar 

  25. Sangouard, N., Lacour, X., Guerin, S., Jauslin, H.R.: Fast SWAP gate by adiabatic passage. Phys. Rev. A 72, 062309 (2005)

    Article  ADS  Google Scholar 

  26. Wang, B., Duan, L.M.: Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation. Phys. Rev. A 75, 050304(R) (2007)

    Article  ADS  Google Scholar 

  27. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  28. Koshino, K., Ishizaka, S., Nakamura, Y.: Deterministic photon-photon SWAP gate using a \(\Lambda \) system. Phys. Rev. A 82, 010301(R) (2010)

    Article  ADS  Google Scholar 

  29. Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)

    Article  ADS  Google Scholar 

  30. Wang, H., Burkard, G.: Mechanically induced two-qubit gates and maximally entangled states for single electron spins in a carbon nanotube. Phys. Rev. B 92, 195432 (2015)

    Article  ADS  Google Scholar 

  31. Salathé, Y., Mondal, M., Opplier, M., Heinsoo, J., Kurpiers, P., Potočnik, A., Mezzacapo, A., Las Heras, U., Lamata, L., Solano, E., Filipp, S., Wallraff, A.: Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys. Rev. X 5, 021027 (2015)

    Google Scholar 

  32. Andrianov, S.N., Moiseev, S.A.: Fast and robust two- and three-qubit swapping gates on multi-atomic ensembles in quantum electrodynamic cavity. arXiv1103, 3098 (2011)

  33. Liu, A.P., Wen, J.J., Cheng, L.Y., Su, S.L., Chen, L., Wang, H.F., Zhang, S.: Quantum cloning based on iSWAP gate with nitrogen-vacancy centers in photonic crystal cavities. Opt. Communications 333, 187–192 (2014)

    Article  ADS  Google Scholar 

  34. Luo, M.X., Li, H.R., Wang, X.J.: Distributed atomic quantum information processing via optical fibers. Sci. Rep. 7, 1234 (2017)

    Article  ADS  Google Scholar 

  35. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  MATH  Google Scholar 

  36. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Ry. Soc. London A 439, 533 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  38. Serra, S.M., Villas-Boas, C.J., de Almeida, N.G., Moussa, M.H.Y.: Frequency up-and down-conversions in two-mode cavity quantum electrodynamics. Phys. Rev. A 71, 045802 (2005)

    Article  ADS  Google Scholar 

  39. Guzman, R., Retamal, J.C., Solano, E., Zagury, N.: Field squeeze operators in optical cavities with atomic ensembles. Phys. Rev. Lett. 96, 010502 (2006)

    Article  ADS  Google Scholar 

  40. Parkins, A.S., Solano, E., Cirac, J.I.: Unconditional two-mode squeezing of separated atomic ensembles. Phys. Rev. Lett. 96, 053602 (2006)

    Article  ADS  Google Scholar 

  41. Joshi, A., Hassan, S.S., Xiao, M.: Generation of a two-mode generalized coherent state in a cavity QED system. Phys. Lett. A 367, 415 (2007)

    Article  ADS  Google Scholar 

  42. Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111, 103604 (2013)

    Article  ADS  Google Scholar 

  43. Chouikh, A., Said, T., Essammouni, K., Bennai, M.: Implementation of universal two- and three-qubit quantum gates in a cavity QED. Opt. Quant. Electron. 48, 463 (2016)

    Article  Google Scholar 

  44. Zubairy, M.S., Kim, M., Scully, M.O.: Cavity-QED-based quantum phase gate. Phys. Rev. A 68, 033820 (2003)

    Article  ADS  Google Scholar 

  45. Shao, X.Q., Chen, L., Zhang, S., Zhao, Y.F.: Swap gate and controlled swap gate base on a single resonant interaction with cavity quantum electrodynamics. Phys. Scr. 79, 065004 (2009)

    Article  ADS  MATH  Google Scholar 

  46. Plenio, M.B., Knight, P.L.: The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101 (1998)

    Article  ADS  Google Scholar 

  47. Li, Y., Zheng, L., Liu, Y.X., Sun, C.P.: Correlated photons and collective excitations of a cyclic atomic ensemble. Phys. Rev. A 73, 043805 (2006)

    Article  ADS  Google Scholar 

  48. Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, Franco: Optical selection rules and phase-dependent adiabatic State Control in a superconducting quantum Circuit. Phys. Rev. Lett. 95, 087001 (2005)

    Article  ADS  Google Scholar 

  49. Li, Y., Bruder, C., Sun, C.P.: Generalized stern-gerlach effect for chiral molecules. Phys. Rev. Lett. 99, 130403 (2007)

    Article  ADS  Google Scholar 

  50. Kral, P., Shapiro, M.: Cyclic population transfer in quantum systems with broken symmetry. Phys. Rev. Lett. 87, 183002 (2001)

    Article  ADS  Google Scholar 

  51. Gu, X., Frisk Kockumb, A., Miranowicz, A., Liu, Y.X., Nori, Franco: Microwave photonics with superconducting quantum circuits. arXiv:1707.02046 (2017)

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant Nos. 11674253, 11674089,11725524 and 61471356.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-an Yan or Hao-xue Qiao.

Appendix: using the time-averaging method to obtain effective hamiltonians

Appendix: using the time-averaging method to obtain effective hamiltonians

We using the uncoupled time-dependent Schrödinger equation in the interaction picture, as below:

$$\begin{aligned} i\left[ \frac{\partial \vert {\Psi _{1}(t)}\rangle }{\partial t}\right] =H_\mathrm{eff}\vert {\Psi _{1}(t)}\rangle . \end{aligned}$$
(15)

where

$$\begin{aligned} H_\mathrm{eff}=\frac{1}{{i\hbar }}(H^{(1)}_\mathrm{eff}(t)+H^{(2)}_\mathrm{eff}(t))\int (H^{(1)}_\mathrm{eff}(t')+H^{(2)}_\mathrm{eff}(t'))dt'. \end{aligned}$$
(16)

where the indefinite integral is evaluated at time t without a constant of integration. These arguments can be placed on more rigorous footing by considering the evolution of a time-averaged wavefunction.

From the second part of the article, we can know

$$\begin{aligned} H^{(2)}_\mathrm{eff}= & {} \Omega (\vert {+}\rangle \langle {+}\vert -\vert {-}\rangle \langle {-}\vert ), \end{aligned}$$
(17)
$$\begin{aligned} H^{(1)}_\mathrm{eff}= & {} \frac{g_{a}a}{{\sqrt{2}}}(\vert {+}\rangle +\vert {-}\rangle )\langle {g}\vert +\frac{g_{b}b}{{\sqrt{2}}}(\vert {+}\rangle -\vert {-}\rangle )\langle {g}\vert +h.c. \end{aligned}$$
(18)

Therefore, we can obtain the effective Hamiltonian

$$\begin{aligned} \begin{aligned} H_\mathrm{eff}&=\frac{1}{{2\Omega }}[(\vert {+}\rangle \langle {+}\vert -\vert {-}\rangle \langle {-}\vert )(g^{2}_{a}a^{\dag }a+g^{2}_{b}b^{\dag }b)\\&\quad +g_{a}g_{b}(\vert {+}\rangle \langle {+}\vert +\vert {-}\rangle \langle {-}\vert )(a^{\dag }b+ab^{\dag })\\&\quad -2g_{a}g_{b}\vert {g}\rangle \langle {g}\vert (a^{\dag }b+ab^{\dag })]+\hbox {oscillating-terms}. \end{aligned} \end{aligned}$$
(19)

Here, we prepare the initial state of the atom in level \(\vert {g}\rangle \), the dynamics generated by \(H_\mathrm{eff}\) acting on this state factors out and leaves the atomic state unchanged. This allows us to reduce the dynamics to that of the cavity fields only and if we confine our interest to dynamics which are time-averaged over a period much longer than the period of any of the oscillations present in the effect Hamiltonian then the oscillating terms may be neglected, and we can get the effective Hamiltonian

$$\begin{aligned} H_\mathrm{eff}=-(\zeta a^{\dag }b+\zeta ^{*}b^{\dag }a)\vert {g}\rangle \langle {g}\vert . \end{aligned}$$
(20)

Here \(\zeta =\frac{g_{a}g_{b}}{\Omega }\) is the effective coupling constant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Ga., Qiao, Hx. & Lu, H. Quantum iSWAP gate in optical cavities with a cyclic three-level system. Quantum Inf Process 17, 71 (2018). https://doi.org/10.1007/s11128-018-1836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1836-7

Keywords

Navigation