Skip to main content

Advertisement

Log in

Partition-based discrete-time quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We introduce a family of discrete-time quantum walks, called two-partition model, based on two equivalence-class partitions of the computational basis, which establish the notion of local dynamics. This family encompasses most versions of unitary discrete-time quantum walks driven by two local operators studied in literature, such as the coined model, Szegedy’s model, and the 2-tessellable staggered model. We also analyze the connection of those models with the two-step coined model, which is driven by the square of the evolution operator of the standard discrete-time coined walk. We prove formally that the two-step coined model, an extension of Szegedy model for multigraphs, and the two-tessellable staggered model are unitarily equivalent. Then, selecting one specific model among those families is a matter of taste not generality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. A clique of G is a set of vertices that induces a complete subgraph of G.

References

  1. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1, 507–518 (2003)

    Article  MATH  Google Scholar 

  2. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithm, pp. 1099–1108 (2005)

  3. Ambainis, A., Portugal, R., Nahimov, N.: Spatial search on grids with minimum memory. Quantum Inf. Comput. 15, 1233–1247 (2015)

    MathSciNet  Google Scholar 

  4. Asboth, J.K., Oroszlany, L., Palyi, A.: A Short Course on Topological Insulators: Band-Structure Topology and Edge States in One and Two Dimensions, Lecture Notes in Physics, vol. 919. Springer, Berlin (2016)

    MATH  Google Scholar 

  5. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the 33rd ACM Symposium on Theory of Computing, pp. 50–59 (2000)

  6. Cantero, M.J., Moral, L., Velázquez, L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cantero, M.J., Grünbaum, F.A., Moral, L., Velázquez, L.: The CGMV method for quantum walks. Quantum Inf. Process. 11, 1149–1192 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carteret, H.A., Ismail, M.E.H., Richmond, B.: Three routes to the exact asymptotics for the one-dimensional quantum walk. J. Phys. A Math. Gen. 36, 8775 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Feldman, E., Hillery, M.: Scattering theory and discrete-time quantum walks. Phys. Lett. A 324, 277 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Feynman, R.F., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill Inc, New York (1965)

    MATH  Google Scholar 

  11. Gudder, S.: Quantum Probability. Academic Press Inc., New York (1988)

    MATH  Google Scholar 

  12. Higuchi, Yu., Konno, N., Sato, I., Segawa, E.: Quantum graph walks I: mapping to quantum walks. Yokohama Math. J. 59, 33–55 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Higuchi, Y., Konno, N., Sato, I., Segawa, E.: A remark on zeta functions of finite graphs via quantum walks. Pac. J. Math Ind. 6, 73–84 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Higuchi, Y., Segawa, E., Suzuki, A.: arXiv:1506.06457

  15. Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82, 033429 (2010)

    Article  ADS  Google Scholar 

  16. Konno, N.: Quantum Walks, Lecture Notes in Mathematics. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  17. Loke, T., Wang, J.B.: Efficient quantum circuits for Szegedy quantum walks. Ann. Phys. 382, 64–84 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Matsue, K., Ogurisu, O., Segawa, E.: A note on the spectral mapping theorem of quantum walk models. Interdiscip. Inf. Sci. 23, 105–114 (2017)

    MathSciNet  Google Scholar 

  19. Matsuoka, L., Yokoyama, K.: Physical implementation of quantum cellular automaton in a diatomic molecule. J. Comput. Theor. Nanosci. 10, 1617–1620 (2013)

    Article  Google Scholar 

  20. Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  21. Ohno, H.: Unitary equivalent classes of one-dimensional quantum walks. Quantum Inf. Process. 15, 3599–3617 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Parthasarathy, K.R.: The passage from random walk to diffusion in quantum probability. J. Appl. Probab. 25, 151–166 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peterson, D.: Gridline graphs: a review in two dimensions and an extension to higher dimensions. Discrete Appl. Math. 126, 223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Portugal, R.: Establishing the equivalence between Szegedy’s and coined quantum walks using the staggered model. Quantum Inf. Process. 15, 1387–1409 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Portugal, R.: Staggered quantum walks on graphs. Phys. Rev. A 93, 062335 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. Portugal, R., Oliveira, M.C., Moqadam, J.K.: Staggered quantum walks with Hamiltonians. Phys. Rev. A 95, 012328 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered quantum walk model. Quantum Inf. Process. 15, 85–101 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Portugal, R., Segawa, E.: Connecting coined quantum walks with Szegedy’s model. Interdiscip. Inf. Sci. 23, 119–125 (2017)

    MathSciNet  Google Scholar 

  29. Segawa, E.: Localization of quantum qalks induced by recurrence properties of random walks. J. Comput. Theor. Nanosci. 10, 1583–1590 (2013)

    Article  Google Scholar 

  30. Segawa, E., Suzuki, A.: Generator of an abstract quantum walk. Quantum Stud. Math. Found. 3, 11–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shenvi, N., Kempe, J., Whaley, K.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  32. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, pp. 32–41 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsuo Segawa.

Additional information

NK is partially supported by the Grant-in-Aid for Scientific Research (Challenging Exploratory Research) of Japan Society for the Promotion of Science (Grant No. 15K13443). RP acknowledges financial support from Faperj (Grant No. E-26/102.350/2013) and CNPq (Grant No. 303406/2015-1). IS is partially supported by the Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science (Grant No. 15K04985). ES acknowledges financial support from the Grant-in-Aid for Young Scientists (B) and of Scientific Research (B) Japan Society for the Promotion of Science (Grant Nos. 16K17637, 16H03939).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konno, N., Portugal, R., Sato, I. et al. Partition-based discrete-time quantum walks. Quantum Inf Process 17, 100 (2018). https://doi.org/10.1007/s11128-017-1807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1807-4

Keywords

Navigation