Advertisement

Improved quantum circuit modelling based on Heisenberg representation

Article
  • 152 Downloads

Abstract

Heisenberg model allows a more compact representation of certain quantum states and enables efficient modelling of stabilizer gates operation and single-qubit measurement in computational basis on classical computers. Since generic quantum circuit modelling appears intractable on classical computers, the Heisenberg representation that makes the modelling process at least practical for certain circuits is crucial. This paper proposes efficient algorithms to facilitate accurate global phase maintenance for both stabilizer and non-stabilizer gates application that play a vital role in the stabilizer frames data structure, which is based on the Heisenberg representation. The proposed algorithms are critical as maintaining global phase involves compute-intensive operations that are necessary for the modelling of each quantum gate. In addition, the proposed work overcomes the limitations of prior work where the phase factors due to non-stabilizer gates application was not taken into consideration. The verification of the proposed algorithms is made against the golden reference model that is constructed based on the conventional state vector approach.

Keywords

Quantum computation Quantum circuit modelling Heisenberg representation Stabilizer frames data structure 

References

  1. 1.
    Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70(5), 052,328 (2004)CrossRefGoogle Scholar
  2. 2.
    Abubakar, M.Y., Jung, L.T., Zakaria, M.N., Younesy, A., Abdel-Atyz, A.H.: New universal gate library for synthesizing reversible logic circuit using genetic programming. In: International Conference on Computer and Information Sciences (ICCOINS), pp. 316–321. IEEE (2016)Google Scholar
  3. 3.
    Abubakar, M.Y., Jung, L.T., Zakaria, N., Younes, A., Abdel-Aty, A.H.: Reversible circuit synthesis by genetic programming using dynamic gate libraries. Quantum Inf. Process. 16(6), 160 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74(20), 4083 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Bennink, R.S., Ferragut, E.M., Humble, T.S., Laska, J.A., Nutaro, J.J., Pleszkoch, M.G., Pooser, R.C.: Unbiased simulation of near-Clifford quantum circuits. Phys. Rev. A 95(6), 062,337 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bravyi, S., Gosset, D.: Improved classical simulation of quantum circuits dominated by Clifford gates. Phys. Rev. Lett. 116(25), 250,501 (2016)CrossRefGoogle Scholar
  7. 7.
    García, H.J., Markov, I.L.: Simulation of quantum circuits via stabilizer frames. IEEE Trans. Comput. 64(8), 2323–2336 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    García-Ramírez, H.J.: Hybrid techniques for simulating quantum circuits using the Heisenberg representation. Ph.D. thesis, The University of Michigan (2014)Google Scholar
  9. 9.
    Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275(5298), 350–356 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of Technology (1997)Google Scholar
  11. 11.
    Gottesman, D.: The Heisenberg representation of quantum computers. arXiv:quant-ph/9807006 (1998)
  12. 12.
    Homid, A., Abdel-Aty, A., Abdel-Aty, M., Badawi, A., Obada, A.S.: Efficient realization of quantum search algorithm using quantum annealing processor with dissipation. JOSA B 32(9), 2025–2033 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Johansson, N., Larsson, J.Å.: Efficient classical simulation of the Deutsch–Jozsa and Simons algorithms. Quantum Inf. Process. 16(9), 233 (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Khalid, A.U., Zilic, Z., Radecka, K.: FPGA emulation of quantum circuits. In: IEEE International Conference on Computer Design: VLSI in Computers and Processors. ICCD 2004, pp. 310–315. IEEE (2004)Google Scholar
  15. 15.
    Khalil-Hani, M., Lee, Y.H., Marsono, M.N.: An accurate FPGA-based hardware emulation on quantum fourier transform. In: Australasian Symposium on Parallel and Distributed Computing (AusPDC), vol. 1, p. a1b3 (2015)Google Scholar
  16. 16.
    Kliuchnikov, V., Maslov, D.: Optimization of Clifford circuits. Phys. Rev. A 88(5), 052,307 (2013)CrossRefGoogle Scholar
  17. 17.
    Kliuchnikov, V., Maslov, D., Mosca, M.: Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits. Phys. Rev. Lett. 110(19), 190,502 (2013)CrossRefGoogle Scholar
  18. 18.
    Knill, E., Leibfried, D., Reichle, R., Britton, J., Blakestad, R., Jost, J., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.: Randomized benchmarking of quantum gates. Phys. Rev. A 77(1), 012,307 (2008)CrossRefMATHGoogle Scholar
  19. 19.
    Lee, Y.H.: QCM: Quantum circuit modelling using state vector and Heisenberg representations. https://github.com/yeehui1988/QCM (2017)
  20. 20.
    Lee, Y.H., Khalil-Hani, M., Marsono, M.N.: An FPGA-based quantum computing emulation framework based on serial-parallel architecture. Int. J. Reconfigurable Comput. 2016, 1–18 (2016)Google Scholar
  21. 21.
    Messiah, A.: Quantum Mechanics. Dover Publications, New York (1999)MATHGoogle Scholar
  22. 22.
    Miller, D.M., Thornton, M.A.: QMDD: a decision diagram structure for reversible and quantum circuits. In: 36th International Symposium on Multiple-Valued Logic, pp. 30–30. IEEE (2006)Google Scholar
  23. 23.
    Monroe, C., Meekhof, D., King, B., Itano, W., Wineland, D.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mooij, J., Orlando, T., Levitov, L., Tian, L., Van der Wal, C.H., Lloyd, S.: Josephson persistent-current qubit. Science 285(5430), 1036–1039 (1999)CrossRefGoogle Scholar
  25. 25.
    Muñoz-Coreas, E., Thapliyal, H.: Design of quantum circuits for galois field squaring and exponentiation. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 68–73. IEEE (2017)Google Scholar
  26. 26.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  27. 27.
    Shiou-An, W., Chin-Yung, L., Sy-Yen, K., et al.: An XQDD-based verification method for quantum circuits. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 91(2), 584–594 (2008)Google Scholar
  28. 28.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124–134. IEEE (1994)Google Scholar
  29. 29.
    Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Smelyanskiy, M., Sawaya, N.P., Aspuru-Guzik, A.: qHiPSTER: the quantum high performance software testing environment. arXiv:1601.07195 (2016)
  31. 31.
    Viamontes, G.F., Markov, I.L., Hayes, J.P.: Improving QuIDD-based simulation. In: Quantum Circuit Simulation, pp. 133–152. Springer, Dordrecht (2009)Google Scholar
  32. 32.
    Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Information EngineeringThe University of SydneyDarlingtonAustralia
  2. 2.VeCAD Research Laboratory, Faculty of Electrical EngineeringUniversiti Teknologi MalaysiaSkudai, Johor BahruMalaysia

Personalised recommendations