Advertisement

An economic and feasible Quantum Sealed-bid Auction protocol

Article
  • 106 Downloads

Abstract

We present an economic and feasible Quantum Sealed-bid Auction protocol using quantum secure direct communication based on single photons in both the polarization and the spatial-mode degrees of freedom, where each single photon can carry two bits of classical information. Compared with previous protocols, our protocol has higher efficiency. In addition, we propose a secure post-confirmation mechanism without quantum entanglement to guarantee the security and the fairness of the auction.

Keywords

Quantum Sealed-bid Auction Single photons Post-confirmation Privacy-preserving 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61772001).

References

  1. 1.
    Bennett, Ch.,H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computers, Systems and Signal Processing, pp. 175–179, Bangalore, India (1984)Google Scholar
  2. 2.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Lin, S., Wen, Q.Y., Gao, F., et al.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78(6), 064304 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Wang, J., Zhang, Q., Tang, C.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)ADSCrossRefMATHGoogle Scholar
  7. 7.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Zhang, Z., Li, Y., Man, Z.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51(9), 2923–2929 (2012)CrossRefMATHGoogle Scholar
  13. 13.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, L.L., Ma, W.P., Wang, M.L., et al.: Three-party quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55(5), 2490–2499 (2016)CrossRefMATHGoogle Scholar
  15. 15.
    Wang, L.L., Ma, W.P., Shen, D.S., et al.: Efficient bidirectional quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 54(10), 3443–3453 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Subramanian, S.: Design and verification of a secure electronic auction protocol. In: Proceedings of Seventeenth IEEE Symposium on Reliable Distributed Systems, pp. 204–210. IEEE (1998)Google Scholar
  17. 17.
    Yang, Y.G., Naseri, M., Wen, Q.Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282(20), 4167–4170 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Hogg, T., Harsha, P., Chen, K.Y.: Quantum auctions. Int. J. Quantum Inf. 5(05), 751–780 (2007)CrossRefMATHGoogle Scholar
  19. 19.
    Guha, S., Hogg, T., Fattal, D., et al.: Quantum auctions using adiabatic evolution: the corrupt auctioneer and circuit implementations. Int. J. Quantum Inf. 6(04), 815–839 (2008)CrossRefMATHGoogle Scholar
  20. 20.
    Chen, K.Y., Hogg, T.: Experiments with probabilistic quantum auctions. Quantum Inf. Process. 7(4), 139–152 (2008)CrossRefMATHGoogle Scholar
  21. 21.
    Naseri, M.: Secure quantum sealed-bid auction. Opt. Commun. 282(9), 1939–1943 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis and improvement of a secure quantum sealed-bid auction. Opt. Commun. 282(19), 4014–4016 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Liu, Y.M., Wang, D., Liu, X.S., et al.: Revisiting Naseri’s secure quantum sealed-bid auction. Int. J. Quantum Inf. 7(06), 1295–1301 (2009)CrossRefMATHGoogle Scholar
  24. 24.
    Zheng, Y., Zhao, Z.: Comment on: “Secure quantum sealed-bid auction” [Opt. Comm. 282 (2009) 1939]. Opt. Commun. 282(20), 4182 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Zhao, Z., Naseri, M., Zheng, Y.: Secure quantum sealed-bid auction with post-confirmation. Opt. Commun. 283(16), 3194–3197 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Xu, G.A., Zhao, Z.W., Chen, X.B., et al.: Cryptanalysis and improvement of the secure quantum sealed-bid auction with postconfirmation. Int. J. Quantum Inf. 9(06), 1383–1392 (2011)CrossRefMATHGoogle Scholar
  27. 27.
    He, L.B., Huang, L.S., Yang, W., et al.: Cryptanalysis and melioration of secure quantum sealed-bid auction with post-confirmation. Quantum Inf. Process. 11(6), 1359–1369 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Luo, Y., Zhao, Z., Zhao, Z., et al.: The loophole of the improved secure quantum sealed-bid auction with post-confirmation and solution. Quantum Inf. Process. 12(1), 295–302 (2013)ADSCrossRefMATHGoogle Scholar
  29. 29.
    Zhao, Z., Wang, W.: Comment on “Cryptanalysis and improvement of the secure quantum sealed-bid auction with post confirmation”. Int. J. Quantum Inf. 12(06), 1475001 (2014)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Wang, Q.L., Zhang, W.W., Su, Q.: Revisiting, “The loophole of the improved secure quantum sealed-bid auction with post-confirmation and solution”. Int. J. Theor. Phys. 53(9), 3147–3153 (2014)CrossRefMATHGoogle Scholar
  31. 31.
    Zhang-Yin, W.: Quantum secure direct communication and quantum sealed-bid auction with EPR pairs. Commun. Theor. Phys. 54(6), 997 (2010)ADSCrossRefMATHGoogle Scholar
  32. 32.
    Wen-Jie, L., Fang, W., Sai, J., et al.: Attacks and improvement of quantum sealed-bid auction with EPR pairs. Commun. Theor. Phys 61(6), 686 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Wang, J.T., Chen, X.B., Xu, G., et al.: A new quantum sealed-bid auction protocol with secret order in post-confirmation. Quantum Inf. Process. 14(10), 3899–3911 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Liu, W.J., Wang, H.B., Yuan, G.L., et al.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15(2), 869–879 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Raynal, P.: Unambiguous State Discrimination of Two Density Matrices in Quantum Information Theory. arXiv preprint arXiv:quant-ph/0611133 (2006)
  36. 36.
    Herzog, U., Bergou, J.A.: Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A 71(5), 050301 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rui Zhang
    • 1
  • Run-hua Shi
    • 1
  • Jia-qi Qin
    • 1
  • Zhen-wan Peng
    • 1
  1. 1.School of Computer Science and TechnologyAnhui UniversityHefei CityChina

Personalised recommendations