Entropic cohering power in quantum operations

Article
  • 73 Downloads

Abstract

Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.

Keywords

Coherence Quantum correlations Distributed coherence Quantum operation 

Notes

Acknowledgements

Z. Xi is supported by the NSFC (Grant Nos. 61671280 and 11531009), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017KJXX-92), the Funded Projects for the Academic Leaders and Academic Backbones, Shaanxi Normal University (16QNGG013) and the Fundamental Research Funds for the Central Universities (GK201502004). M. Hu is supported by the NSFC (Grant No. 11675129). Y. Li is supported by the NSFC (Grant No. 11671244). H. Fan is supported by MOST of China (2016YFA0302104), NSFC (Grant No. 91536108), and CAS (XDB01010000, XDB21030300).

References

  1. 1.
    Aberg, J.: Quantifying superposition. arXiv:quant-ph/0612146v1 (2006)
  2. 2.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Angelo, R.M., Ribeiro, A.D.: Wave C particle duality: an information-based approach. Found. Phys. 45(11), 140 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Rodrguez-Rosario, A.C., Frauenheim, T., Aspuru-Guzik, A.: Thermodynamics of quantum coherence. arXiv:1308.1245v1 (2013)
  6. 6.
    Marvian, I., Spekkens, R.W.: Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Phys. Rev. A 90, 062110 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Marvian, I., Spekkens, R.W.: Extending noethers theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5, 3821 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Karpat, G., Cakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Aberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Monras, A., Checinska, A., Ekert, A.: Witnessing quantum coherence in the presence of noise. New J. Phys. 16, 063041 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Li, H., et al.: Quantum coherence rather than quantum correlations reflect the effects of a reservoir on a systems work capability. Phys. Rev. E 89, 052132 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Shao, L.H., Xi, Z., Fan, H., Li, Y.: The fidelity and trace norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Singh, U., Bera, M.N., Misra, A., Pati, A.K.: Erasing quantum coherence: an operational approach. arXiv:1506.08186v1 (2015)
  17. 17.
    Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Yuan, X., Zhou, H.Y., Cao, H.Y., Ma, X.F.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Du, S.P., Bai, Z.F., Guo, Y.: Conditions for coherence transformations under incoherent operations. Phys. Rev. A 91, 052120 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Killoran, N., Steinhoff, F.E.S., Plenio, M.B.: Converting nonclassicality into entanglement. Phys. Rev. Lett. 116, 080402 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Ma, J.J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Yadin, B., Ma, J.J., Girolami, D., Gu, M., Vedral, V.: Quantum processes which do not use coherence. Phys. Rev. X 6, 041028 (2016)Google Scholar
  27. 27.
    Hillery, M.: Coherence as a resource in decision problems: the Deutsch–Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Peng, Y., Jiang, Y., Fan, H.: Maximally coherent states and coherence-preserving operations. Phys. Rev. A 93, 032326 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Kammerlande, P., Anders, J.: Coherence and measurement in quantum thermodynamics. Sci. Rep. 6, 22174 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Streltsov, A., Adesso, G., Plenio, M.P.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Mani, M., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Bu, K., Zhang, L., Wu, J.: Cohering power of quantum operations. Phys. Lett. A 381, 1670 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Garcia-Diaz, M., Egloff, D., Plenio, M.B.: A note on coherence power of N-dimensional unitary operators. Quant. Inf. Comput. 16, 1282 (2016)MathSciNetGoogle Scholar
  34. 34.
    Situ, H., Hu, X.: Dynamics of relative entropy of coherence under Markovian channels. Quant. Inf. Process. 15, 4649 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  36. 36.
    Xi, Z.: Information gain and information leak in quantum measurements. Phys. Rev. A 93, 052308 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Roga, W., Fannes, M., Zyczkowski, K.: Universal bounds for the Holevo quantity, coherent information, and the Jensen–Shannon Divergence. Phys. Rev. Lett. 105, 040505 (2010)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Xi, Z., Li, Y., Fan, H.: Quantum coherence and quantum correlations in quantum system. Sci. Rep. 5, 10922 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Giovannetti, V., Fazio, R.: Information-capacity description of spin-chain correlations. Phys. Rev. A 71, 032314 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhengjun Xi
    • 1
  • Ming-Liang Hu
    • 2
  • Yongming Li
    • 1
  • Heng Fan
    • 3
    • 4
    • 5
  1. 1.College of Computer ScienceShaanxi Normal UniversityXi’anChina
  2. 2.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina
  3. 3.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  4. 4.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  5. 5.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations